In order to improve the navigation accuracy of an inertial navigation system (INS), composed of quartz gyroscopes, the existing real-time compensation methods for periodic errors in quartz gyroscope drift and the pe...In order to improve the navigation accuracy of an inertial navigation system (INS), composed of quartz gyroscopes, the existing real-time compensation methods for periodic errors in quartz gyroscope drift and the periodic error term relationship between sampled original data and smoothed data are reviewed. On the base of the results, a new compensation method called using former period characteristics to compensate latter smoothness data (UFCL for short) method is proposed considering the INS working characteristics. This new method uses the original data without smoothing to work out an error conversion formula at the INS initial alignment time and then compensate the smoothed data errors by way of the formula at the navigation time. Both theoretical analysis and experimental results demonstrate that this method is able to cut down on computational time and raise the accuracy which makes it a better real-time compensation approach for periodic error terms of quartz micro electronic mechanical system (MEMS) gyroscope's zero drift.展开更多
The mode coupling is a major factor to affect the precision of the micro electromechanical systems(MEMS) gyroscope. Currently, many MEMS gyroscopes with separate oscillation modes for drive and detection have been d...The mode coupling is a major factor to affect the precision of the micro electromechanical systems(MEMS) gyroscope. Currently, many MEMS gyroscopes with separate oscillation modes for drive and detection have been developed to decrease the mode coupling, but the gyroscope accuracy can not satisfy the high-precision demand well. Therefore, high performance decoupled MEMS gyroscopes is still a hot topic at present. An innovative design scheme for a MEMS gyroscope is designed, and in this design, the inertial mass is divided into three parts including the inner mass, the outer mass and the main frame mass. The masses are supported and separated by a set of mutually orthogonal beams to decouple their movements. Moreover, the design is modelled by multi-port-element network(MuPEN) method and the simulation results show that the mode coupling of the gyroscope between driving and sensing mode was eliminated effectively. Furthermore, we proposed a new silicon-on-insulator(SOI) process to fabricate the gyroscope. The scale factor of the fabricated gyroscope is 8.9 mV/((~)os) and the quality factor(Q-factor) is as high as 600 at atmosphere pressure, and then, the resonant frequency, scale factor and bias drift has been test. Process and test results show that the proposed MEMS gyroscope are effective for decrease mode coupling, furthermore, it can achieve a high performance at atmosphere pressure. Furthermore, the MEMS gyroscope can achieve a high performance at atmosphere pressure. The research can be taken as good advice for the design and fabrication of MEMS gyroscope, meanwhile, it also provides technical support for speeding up of MEMS gyroscope industrialization.展开更多
A novel on-line north-seeking method based on a three-axis micro-electro-mechanical system(MEMS)gyroscope is designed.This system processes data by using a Kalman filter to calibrate the installation error of the thre...A novel on-line north-seeking method based on a three-axis micro-electro-mechanical system(MEMS)gyroscope is designed.This system processes data by using a Kalman filter to calibrate the installation error of the three-axis MEMS gyroscope in complex environment.The attitude angle updating for quaternion,based on which the attitude instrument will be rotated in real-time and the true north will be found.Our experimental platform constitutes the dual-axis electric rotary table and the attitude instrument,which is developed independently by our scientific research team.The experimental results show that the accuracy of north-seeking is higher than 1°,while the maximum root mean square error and the maximum mean absolute error are 0.906 7 and 0.910 0,respectively.The accuracy of north-seeking is much higher than the traditional method.展开更多
基金New Century Program for Excellent Telents (NCET- 04-0162)National Defense Basic Research Program (K1204060116)
文摘In order to improve the navigation accuracy of an inertial navigation system (INS), composed of quartz gyroscopes, the existing real-time compensation methods for periodic errors in quartz gyroscope drift and the periodic error term relationship between sampled original data and smoothed data are reviewed. On the base of the results, a new compensation method called using former period characteristics to compensate latter smoothness data (UFCL for short) method is proposed considering the INS working characteristics. This new method uses the original data without smoothing to work out an error conversion formula at the INS initial alignment time and then compensate the smoothed data errors by way of the formula at the navigation time. Both theoretical analysis and experimental results demonstrate that this method is able to cut down on computational time and raise the accuracy which makes it a better real-time compensation approach for periodic error terms of quartz micro electronic mechanical system (MEMS) gyroscope's zero drift.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z320)Xi’an Municipal Applied Materials Innovation Fund of China (Grant No. XA-AM-200801)
文摘The mode coupling is a major factor to affect the precision of the micro electromechanical systems(MEMS) gyroscope. Currently, many MEMS gyroscopes with separate oscillation modes for drive and detection have been developed to decrease the mode coupling, but the gyroscope accuracy can not satisfy the high-precision demand well. Therefore, high performance decoupled MEMS gyroscopes is still a hot topic at present. An innovative design scheme for a MEMS gyroscope is designed, and in this design, the inertial mass is divided into three parts including the inner mass, the outer mass and the main frame mass. The masses are supported and separated by a set of mutually orthogonal beams to decouple their movements. Moreover, the design is modelled by multi-port-element network(MuPEN) method and the simulation results show that the mode coupling of the gyroscope between driving and sensing mode was eliminated effectively. Furthermore, we proposed a new silicon-on-insulator(SOI) process to fabricate the gyroscope. The scale factor of the fabricated gyroscope is 8.9 mV/((~)os) and the quality factor(Q-factor) is as high as 600 at atmosphere pressure, and then, the resonant frequency, scale factor and bias drift has been test. Process and test results show that the proposed MEMS gyroscope are effective for decrease mode coupling, furthermore, it can achieve a high performance at atmosphere pressure. Furthermore, the MEMS gyroscope can achieve a high performance at atmosphere pressure. The research can be taken as good advice for the design and fabrication of MEMS gyroscope, meanwhile, it also provides technical support for speeding up of MEMS gyroscope industrialization.
基金Supported by the Chongqing International Science and Technology Cooperation Base Project(cstc2014gjhz40001)the University Achievement Transformation Project of Chongqing Science and Technology Commission(KJZH17115)+3 种基金the Basic Research Project of Chongqing Science and Technology Commission(cstc2015jcyjBX0068,cstc2014jcyjA1350,cstc2015jcyjB0360)the Dr.Start-up Fund of Chongqing University of Posts and Telecommunications(A2015-40,A2016-76)the National Natural Science Foundation of Chongqing University of Posts and Telecommunications(A2015-49)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1704104,KJ1704091)
文摘A novel on-line north-seeking method based on a three-axis micro-electro-mechanical system(MEMS)gyroscope is designed.This system processes data by using a Kalman filter to calibrate the installation error of the three-axis MEMS gyroscope in complex environment.The attitude angle updating for quaternion,based on which the attitude instrument will be rotated in real-time and the true north will be found.Our experimental platform constitutes the dual-axis electric rotary table and the attitude instrument,which is developed independently by our scientific research team.The experimental results show that the accuracy of north-seeking is higher than 1°,while the maximum root mean square error and the maximum mean absolute error are 0.906 7 and 0.910 0,respectively.The accuracy of north-seeking is much higher than the traditional method.