High-precision detection in fundamental space physics,such as space gravitational wave detection,high-precision earth gravity field measurement,and reference frame drag effect measurement,is the key to achieving impor...High-precision detection in fundamental space physics,such as space gravitational wave detection,high-precision earth gravity field measurement,and reference frame drag effect measurement,is the key to achieving important breakthroughs in the scientific study of fundamental space physics.Acquiring high-precision measurements requires high-performance satellite platforms to achieve“drag-free control”in a near“pure gravity”flight environment.The critical technology for drag-free control is variable thrust control at the micro-Newton scale.Thrust noise is the most important technical indicator for achieving drag-free flight.However,there is no literature about the current status and future prospects of variable thrust control based on thrust noise.Therefore,the micro-Newton variable thrust control technology and the thrust noise of the drag-free satellite platform are reviewed in this work.Firstly,the research status of micro-Newton scale variable thrust control technology and its applications to drag-free satellite platforms are introduced.Then,the noise problem is analyzed in detail and its solution is theoretically investigated in three aspects:“cross-basin flow problem,”“control problem,”and“system instability and multiple-coupled problem.”Finally,a systematic overview is presented and the corresponding suggested directions of research are discussed.This work provides detailed understanding and support for realizing low-noise variable thrust control in the next generation of drag-free satellites.展开更多
采用基于电磁补偿原理的精密天平,研制了一种微纳力值标准装置。通过高等级的标准砝码对天平进行校准,实现标准装置力值的SI溯源,在500 n N^500μN范围的力值测量标准不确定度小于0.7%。该装置用于对原子力显微镜(AFM)微悬臂弹性常数和...采用基于电磁补偿原理的精密天平,研制了一种微纳力值标准装置。通过高等级的标准砝码对天平进行校准,实现标准装置力值的SI溯源,在500 n N^500μN范围的力值测量标准不确定度小于0.7%。该装置用于对原子力显微镜(AFM)微悬臂弹性常数和微小力值传感器的力值提供准确的溯源。采用多自由度位置调整系统调整被测微悬臂或传感器的位置及俯仰角度,提高了定位准确度。对几种不同弹性常数的AFM微悬臂进行测量,测量结果的标准偏差小于1.6%,满足高准确度微小力值测量的要求。展开更多
基金supported by the National Natural Science Foundation of China(Nos.52105070 and U21B2074).
文摘High-precision detection in fundamental space physics,such as space gravitational wave detection,high-precision earth gravity field measurement,and reference frame drag effect measurement,is the key to achieving important breakthroughs in the scientific study of fundamental space physics.Acquiring high-precision measurements requires high-performance satellite platforms to achieve“drag-free control”in a near“pure gravity”flight environment.The critical technology for drag-free control is variable thrust control at the micro-Newton scale.Thrust noise is the most important technical indicator for achieving drag-free flight.However,there is no literature about the current status and future prospects of variable thrust control based on thrust noise.Therefore,the micro-Newton variable thrust control technology and the thrust noise of the drag-free satellite platform are reviewed in this work.Firstly,the research status of micro-Newton scale variable thrust control technology and its applications to drag-free satellite platforms are introduced.Then,the noise problem is analyzed in detail and its solution is theoretically investigated in three aspects:“cross-basin flow problem,”“control problem,”and“system instability and multiple-coupled problem.”Finally,a systematic overview is presented and the corresponding suggested directions of research are discussed.This work provides detailed understanding and support for realizing low-noise variable thrust control in the next generation of drag-free satellites.
文摘采用基于电磁补偿原理的精密天平,研制了一种微纳力值标准装置。通过高等级的标准砝码对天平进行校准,实现标准装置力值的SI溯源,在500 n N^500μN范围的力值测量标准不确定度小于0.7%。该装置用于对原子力显微镜(AFM)微悬臂弹性常数和微小力值传感器的力值提供准确的溯源。采用多自由度位置调整系统调整被测微悬臂或传感器的位置及俯仰角度,提高了定位准确度。对几种不同弹性常数的AFM微悬臂进行测量,测量结果的标准偏差小于1.6%,满足高准确度微小力值测量的要求。