Heterogeneous reactions on the aerosol particle surface in the atmosphere play important roles in air pollution, climate change, and global biogeochemical cycles. However, the reported uptake coefficients of heterogen...Heterogeneous reactions on the aerosol particle surface in the atmosphere play important roles in air pollution, climate change, and global biogeochemical cycles. However, the reported uptake coefficients of heterogeneous reactions usually have large variations and may not be relevant to real atmospheric conditions. One of the major reasons for this is the use of bulk samples in laboratory experiments, while particles in the atmosphere are suspended individually. A number of technologies have been developed recently to study heterogeneous reactions on the surfaces of individual particles. Precise measurements on the reactive surface area, volume, and morphology of individual particles are necessary for calculating the uptake coefficient, quantifying reactants and products, and understanding the reaction mechanism better. In this study, for the first time we used synchrotron radiation X-ray computed tomography(XCT) and micro-Raman spectrometry to measure individual CaCO_3 particle morphology, with sizes ranging from 3.5–6.5 μm. Particle surface area and volume were calculated using a reconstruction method based on software threedimensional(3-D) rendering. The XCT was first validated with high-resolution fieldemission scanning electron microscopy(FE-SEM) to acquire accurate CaCO_3 particle surface area and volume estimates. Our results showed an average difference of only 6.1% in surface area and 3.2% in volume measured either by micro-Raman spectrometry or X-ray tomography. X-ray tomography and FE-SEM can provide more morphological details of individual Ca CO3 particles than micro-Raman spectrometry. This study demonstrated that X-ray computed tomography and micro-Raman spectrometry can precisely measure the surface area, volume, and morphology of an individual particle.展开更多
The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides...The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides such as^(60)Fe.In this work,we stepped up the development of an accelerator mass spectrometry(AMS)method for detecting^(60)Fe using the HI-13tandem accelerator at the China Institute of Atomic Energy(CIAE).Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph,a Wien filter with a maximum voltage of±60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide^(60)Fe.A 1μm thick Si_(3)N_(4) foil was installed in front of the Q3D as an energy degrader.For particle detection,a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph.Finally,an^(60)Fe sample with an abundance of 1.125×10^(-10)was used to test the new AMS system.These results indicate that^(60)Fe can be clearly distinguished from the isobar^(60)Ni.The sensitivity was assessed to be better than 4.3×10^(-14)based on blank sample measurements lasting 5.8 h,and the sensitivity could,in principle,be expected to be approximately 2.5×10^(-15)when the data were accumulated for 100 h,which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.展开更多
The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample pre...The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample preparation workflow for mass spectrometry-based proteomics.Using HeLa cells as an example,we found that the method employing the mass spectrometry-compatible surfactant BT reagent significantly reduces the total time consumed for protein extraction and minimizes protein losses during the sample preparation process.Further integrating the four protein extraction methods,we identified over 7000 proteins from HeLa cells without relying on pre-fractionation techniques,and 2990 of them were quantified using label-free quantification.It is worth noting that the BT and SDS methods demonstrate higher efficiency in extracting membrane proteins,while the Urea and Trizol methods are more effective in extracting proteins from nuclear and cytoplasmic fractions.In summary,this study provides a novel solution for deep proteome coverage,particularly in the context of cellular protein extraction,by integrating mass spectrometry-compatible surfactants with traditional extraction methods to effectively enhance protein identification numbers.展开更多
Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the ...Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.展开更多
Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development.In this study,we present an innovative,integrated approach that combines air flowassisted desorption elec...Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development.In this study,we present an innovative,integrated approach that combines air flowassisted desorption electrospray ionization mass spectrometry imaging(AFADESI-MSI),time-of-flight secondary ion mass spectrometry(ToF-SIMS),and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride(NC),a promising anti-tumor drug candidate.Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney,particularly within the inner cortex(IC)region,following single and repeated dose of NC.High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule.Employing spatial metabolomics based on AFADESI-MSI,we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure.These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters(organic cation transporters,multidrug and toxin extrusion,and organic cation transporter 2(OCT2)),metabolic enzymes(protein arginine N-methyltransferase(PRMT)and nitric oxide synthase),mitochondria,oxidative stress,and inflammation in NC-induced nephrotoxicity.This study offers novel insights into NC-induced renal damage,representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.展开更多
To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to i...To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.展开更多
A method using high performance liquid chromatography(HPLC)was developed for the s imultaneous determination of 13 preservatives(levulinic acid,p-hydroxyacetophenone,raspberry ketone,p-anisic acid,caprylhydroxamic aci...A method using high performance liquid chromatography(HPLC)was developed for the s imultaneous determination of 13 preservatives(levulinic acid,p-hydroxyacetophenone,raspberry ketone,p-anisic acid,caprylhydroxamic acid,hydroxyethoxyphenyl butanone,methylisothiazolinone,phenoxyethanol,b e n z oic acid,methylparaben,chlorphenesin,dehydroacetic acid,and 5-bromo-5-nitro-1,3-dioxane)in cosmetics.Different types of samples were ultrasonically extracted by methanol,then the separation of 13 preservatives was carried out on a column of Agilent ZORBAX Eclipse XDB-C18(250 mm×4.6 mm,5μm)by gradient elution at a flow rate of 1.0 mL/min,using 0.1%phosphoric acid solution and acetonitrile as mobile phases.The column temperature was 30℃,and the detection was completed by a diode array detector with the wavelengths at 275,230 and 210 nm.Suspected positive samples were further confirmed by liquid chromatography-tandem mass spectrometry or gas chromatography-mass spectrometry.The linear regression analysis data shows good linearity for 13 preservatives in the respective mass concentration range,with their correlation coefficients(r)greater than 0.9998.The limits of detection(LODs)and limits of quantitation(LOQs)of the method are in the ranges of 0.4-100.0 mg/kg and 1.2-250.0 mg/kg,respectively.At three spiked levels,the average recoveries for 13 target compounds in three kinds of matrix samples are within 84.0%-115.4%,and the relative standard deviations(RSD)are within 0.5%-4.8%(n=6).This method is convenient,efficient,and precise,which can be used for qualitative and quantitative analysis of common preservatives in daily cosmetics.展开更多
In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.Ho...In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.However,the resolution of T inevitably deteriorates due to the magnetic rigidity spread of the ions,limiting the mass-resolving power.In this study,we used the betatron tunes Q(the number of betatron oscillations per revolution)of the ions and established a correlation between T and Q.From this correlation,T was transformed to correspond to a fixed Q with higher resolution.Using these transformed T values,the masses of ^(63)Ge,^(65)As,^(67)Se,and ^(71)Kr agreed well with the mass values measured using the newly developed IMS(Bρ-IMS).We also studied the systematics of Coulomb displacement energies(CDEs)and found that anomalous staggering in CDEs was eliminated using new mass values.This method of T transformation is highly effective for conventional IMS equipped with a single time-of-flight detector.展开更多
Biotherapeutic's higher order structure(HOS)is a critical determinant of its functional properties and conformational relevance.Here,we evaluated two covalent labeling methods:diethylpyrocarbonate(DEPC)-labeling a...Biotherapeutic's higher order structure(HOS)is a critical determinant of its functional properties and conformational relevance.Here,we evaluated two covalent labeling methods:diethylpyrocarbonate(DEPC)-labeling and fast photooxidation of proteins(FPOP),in conjunction with mass spectrometry(MS),to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics(BABB).The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions,which cannot be detected by conventional biophysical techniques,e.g.,near-ultraviolet circular dichroism(NUV-CD).The determined variations in labeling uptake under native and stress conditions,corroborated by binding assays,shed light on the binding effect,and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality.Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.展开更多
[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by ga...[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.展开更多
In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy...In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.展开更多
BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.neg...BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.negundo),a perennial herb belonging to the Varbanaceae family,is extensively used in conventional medication.AIM To determine the existence of therapeutic components in leaf and callus extracts from wild V.negundo plants using gas chromatography-mass spectrometry(GCMS).METHODS In this study,we conducted GC-MS on wild plant leaf extracts and correlated the presence of constituents with those in callus extracts.Various growth regulators such as 6-benzylaminopurine(BAP),2,4-dichlorophenoxyacetic acid(2,4-D),α-naphthylacetic acid(NAA),and di-phenylurea(DPU)were added to plant leaves and in-vitro callus and grown on MS medium.RESULTS The results clearly indicated that the addition of BAP(2.0 mg/L),2,4-D(0.2 mg/mL),DPU(2.0 mg/L)and 2,4-D(0.2 mg/mL)in MS medium resulted in rapid callus development.The plant profile of Vitex extracts by GC-MS analysis showed that 24,10,and 14 bioactive constituents were detected in the methanolic extract of leaf,green callus and the methanolic extract of white loose callus,respectively.CONCLUSION Octadecadienoic acid,hexadecanoic acid and methyl ester were the major constituents in the leaf and callus methanolic extract.Octadecadienoic acid was the most common constituent in all samples.The maximum concentration of octadecadienoic acid in leaves,green callus and white loose callus was 21.93%,47.79%and 40.38%,respectively.These findings demonstrate that the concentration of octadecadienoic acid doubles in-vitro compared to in-vivo.In addition to octadecadienoic acid;butyric acid,benzene,1-methoxy-4-(1-propenyl),dospan,tridecanedialdehyde,methylcyclohexenylbutanol,chlorpyrifos,n-secondary terpene diester,anflunine and other important active compounds were also detected.All these components were only available in callus formed in-vitro.This study showed that the callus contained additional botanical characteristics compared with wild plants.Due to the presence of numerous bioactive compounds,the medical use of Vitex for various diseases has been accepted and the plant is considered an important source of therapeutics for research and development.展开更多
[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived f...[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived food.[Methods]The samples were extracted with sodium carbonate buffer solution and ethyl acetate,and analyzed by mass spectrometry after solid phase extraction and high performance liquid chromatography separation.[Results]Ten kinds ofα2-receptor agonists showed a good linear relationship in the range of 1-100μg/mL,with the average recovery of over 69%and the relative standard deviation less than 8.32%.The detection limit of 10 kinds of α_(2)-receptor agonists was up to 1μg/kg.[Conclusions]The method has good selectivity and strong anti-interference ability,and can meet the requirements of 10 kinds ofα2-receptor agonists residues in animal derived food.展开更多
[Objective] The inductively coupled plasma mass spectrometry(ICP-MS)was constructed to determine the contents of lead,cadmium,mercury and arsenic in Archyranthes bidentata Blume.[Method]Under the optimum operation con...[Objective] The inductively coupled plasma mass spectrometry(ICP-MS)was constructed to determine the contents of lead,cadmium,mercury and arsenic in Archyranthes bidentata Blume.[Method]Under the optimum operation condition of ICP-MS,the samples were digested by microwave.The element 114In was taken as an internal standard element to compensate body effect and ICP-MS method was used to determine the contents of lead,cadmium,mercury and arsenic.[Result]For the determined elements,the correlation coefficient(r)of standard curve was over 0.9995 and recovery rate was from 96.7% to 106.4% while RSD was less than 11.2%.The result of determination showed that the heavy metal content in Archyranthes bidentata Blume.beyond standard was serious.[Conclusion]The constructed ICP-MS method with simple operation,rapid response,accuracy and high sensitivity in this experiment could be used for quality control of Chinese medicinal materials by detecting heavy metal contents in different Chinese medicinal materials from original places.展开更多
[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by c...[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.展开更多
[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by co...[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by combined flame atomic absorption spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-0.8 mg/L for Cr and 0-0.8 mg/L for Zn, the detection limits of Cr and Zn was 0.0025 mg/L and 0.002 3 mg/L, respectively. Recoveries of 102.4%-103.2% for Cr and 97.7%-98.3% for Zn were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of Cr and Zn in soil samples.展开更多
Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomer...Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.展开更多
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filte...A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.展开更多
基金supported by the Chinese Ministry of Science and Technology(No.2008AA062503)the National Natural Science Foundation Committee of China(Nos.41421064,20637020)the China Postdoctoral Science Foundation(No.20100470166)
文摘Heterogeneous reactions on the aerosol particle surface in the atmosphere play important roles in air pollution, climate change, and global biogeochemical cycles. However, the reported uptake coefficients of heterogeneous reactions usually have large variations and may not be relevant to real atmospheric conditions. One of the major reasons for this is the use of bulk samples in laboratory experiments, while particles in the atmosphere are suspended individually. A number of technologies have been developed recently to study heterogeneous reactions on the surfaces of individual particles. Precise measurements on the reactive surface area, volume, and morphology of individual particles are necessary for calculating the uptake coefficient, quantifying reactants and products, and understanding the reaction mechanism better. In this study, for the first time we used synchrotron radiation X-ray computed tomography(XCT) and micro-Raman spectrometry to measure individual CaCO_3 particle morphology, with sizes ranging from 3.5–6.5 μm. Particle surface area and volume were calculated using a reconstruction method based on software threedimensional(3-D) rendering. The XCT was first validated with high-resolution fieldemission scanning electron microscopy(FE-SEM) to acquire accurate CaCO_3 particle surface area and volume estimates. Our results showed an average difference of only 6.1% in surface area and 3.2% in volume measured either by micro-Raman spectrometry or X-ray tomography. X-ray tomography and FE-SEM can provide more morphological details of individual Ca CO3 particles than micro-Raman spectrometry. This study demonstrated that X-ray computed tomography and micro-Raman spectrometry can precisely measure the surface area, volume, and morphology of an individual particle.
基金supported by the National Natural Science Foundation of China(Nos.12125509,12222514,11961141003,and 12005304)National Key Research and Development Project(No.2022YFA1602301)+1 种基金CAST Young Talent Support Planthe CNNC Science Fund for Talented Young Scholars Continuous support for basic scientific research projects。
文摘The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides such as^(60)Fe.In this work,we stepped up the development of an accelerator mass spectrometry(AMS)method for detecting^(60)Fe using the HI-13tandem accelerator at the China Institute of Atomic Energy(CIAE).Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph,a Wien filter with a maximum voltage of±60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide^(60)Fe.A 1μm thick Si_(3)N_(4) foil was installed in front of the Q3D as an energy degrader.For particle detection,a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph.Finally,an^(60)Fe sample with an abundance of 1.125×10^(-10)was used to test the new AMS system.These results indicate that^(60)Fe can be clearly distinguished from the isobar^(60)Ni.The sensitivity was assessed to be better than 4.3×10^(-14)based on blank sample measurements lasting 5.8 h,and the sensitivity could,in principle,be expected to be approximately 2.5×10^(-15)when the data were accumulated for 100 h,which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.
文摘The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample preparation workflow for mass spectrometry-based proteomics.Using HeLa cells as an example,we found that the method employing the mass spectrometry-compatible surfactant BT reagent significantly reduces the total time consumed for protein extraction and minimizes protein losses during the sample preparation process.Further integrating the four protein extraction methods,we identified over 7000 proteins from HeLa cells without relying on pre-fractionation techniques,and 2990 of them were quantified using label-free quantification.It is worth noting that the BT and SDS methods demonstrate higher efficiency in extracting membrane proteins,while the Urea and Trizol methods are more effective in extracting proteins from nuclear and cytoplasmic fractions.In summary,this study provides a novel solution for deep proteome coverage,particularly in the context of cellular protein extraction,by integrating mass spectrometry-compatible surfactants with traditional extraction methods to effectively enhance protein identification numbers.
文摘Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.
基金supported by the National Natural Science Foundation of China(Grant No.:21927808)the National Key Research and Development Program of China(Grant No.:2017YFC1704006).
文摘Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development.In this study,we present an innovative,integrated approach that combines air flowassisted desorption electrospray ionization mass spectrometry imaging(AFADESI-MSI),time-of-flight secondary ion mass spectrometry(ToF-SIMS),and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride(NC),a promising anti-tumor drug candidate.Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney,particularly within the inner cortex(IC)region,following single and repeated dose of NC.High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule.Employing spatial metabolomics based on AFADESI-MSI,we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure.These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters(organic cation transporters,multidrug and toxin extrusion,and organic cation transporter 2(OCT2)),metabolic enzymes(protein arginine N-methyltransferase(PRMT)and nitric oxide synthase),mitochondria,oxidative stress,and inflammation in NC-induced nephrotoxicity.This study offers novel insights into NC-induced renal damage,representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450202).
文摘To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.
文摘A method using high performance liquid chromatography(HPLC)was developed for the s imultaneous determination of 13 preservatives(levulinic acid,p-hydroxyacetophenone,raspberry ketone,p-anisic acid,caprylhydroxamic acid,hydroxyethoxyphenyl butanone,methylisothiazolinone,phenoxyethanol,b e n z oic acid,methylparaben,chlorphenesin,dehydroacetic acid,and 5-bromo-5-nitro-1,3-dioxane)in cosmetics.Different types of samples were ultrasonically extracted by methanol,then the separation of 13 preservatives was carried out on a column of Agilent ZORBAX Eclipse XDB-C18(250 mm×4.6 mm,5μm)by gradient elution at a flow rate of 1.0 mL/min,using 0.1%phosphoric acid solution and acetonitrile as mobile phases.The column temperature was 30℃,and the detection was completed by a diode array detector with the wavelengths at 275,230 and 210 nm.Suspected positive samples were further confirmed by liquid chromatography-tandem mass spectrometry or gas chromatography-mass spectrometry.The linear regression analysis data shows good linearity for 13 preservatives in the respective mass concentration range,with their correlation coefficients(r)greater than 0.9998.The limits of detection(LODs)and limits of quantitation(LOQs)of the method are in the ranges of 0.4-100.0 mg/kg and 1.2-250.0 mg/kg,respectively.At three spiked levels,the average recoveries for 13 target compounds in three kinds of matrix samples are within 84.0%-115.4%,and the relative standard deviations(RSD)are within 0.5%-4.8%(n=6).This method is convenient,efficient,and precise,which can be used for qualitative and quantitative analysis of common preservatives in daily cosmetics.
基金supported in part by the National Key R&D Program of China (No. 2023YFA1606401)CAS Project for Young Scientists in Basic Research (No. YSBR-002)+3 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB34000000)the NSFC (Nos. 12305126, 12135017, 12121005)the support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2021419)the support from the Yong Scholar of Regional Development,CAS (No.[2023]15)
文摘In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.However,the resolution of T inevitably deteriorates due to the magnetic rigidity spread of the ions,limiting the mass-resolving power.In this study,we used the betatron tunes Q(the number of betatron oscillations per revolution)of the ions and established a correlation between T and Q.From this correlation,T was transformed to correspond to a fixed Q with higher resolution.Using these transformed T values,the masses of ^(63)Ge,^(65)As,^(67)Se,and ^(71)Kr agreed well with the mass values measured using the newly developed IMS(Bρ-IMS).We also studied the systematics of Coulomb displacement energies(CDEs)and found that anomalous staggering in CDEs was eliminated using new mass values.This method of T transformation is highly effective for conventional IMS equipped with a single time-of-flight detector.
基金supported by Amgen Inc.,USA and the National Institutes of Health,USA(Grant Nos.:R01CA218500(ARI)and R35GM136421(ARI))。
文摘Biotherapeutic's higher order structure(HOS)is a critical determinant of its functional properties and conformational relevance.Here,we evaluated two covalent labeling methods:diethylpyrocarbonate(DEPC)-labeling and fast photooxidation of proteins(FPOP),in conjunction with mass spectrometry(MS),to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics(BABB).The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions,which cannot be detected by conventional biophysical techniques,e.g.,near-ultraviolet circular dichroism(NUV-CD).The determined variations in labeling uptake under native and stress conditions,corroborated by binding assays,shed light on the binding effect,and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality.Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei Province.
文摘[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.
文摘In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.
文摘BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.negundo),a perennial herb belonging to the Varbanaceae family,is extensively used in conventional medication.AIM To determine the existence of therapeutic components in leaf and callus extracts from wild V.negundo plants using gas chromatography-mass spectrometry(GCMS).METHODS In this study,we conducted GC-MS on wild plant leaf extracts and correlated the presence of constituents with those in callus extracts.Various growth regulators such as 6-benzylaminopurine(BAP),2,4-dichlorophenoxyacetic acid(2,4-D),α-naphthylacetic acid(NAA),and di-phenylurea(DPU)were added to plant leaves and in-vitro callus and grown on MS medium.RESULTS The results clearly indicated that the addition of BAP(2.0 mg/L),2,4-D(0.2 mg/mL),DPU(2.0 mg/L)and 2,4-D(0.2 mg/mL)in MS medium resulted in rapid callus development.The plant profile of Vitex extracts by GC-MS analysis showed that 24,10,and 14 bioactive constituents were detected in the methanolic extract of leaf,green callus and the methanolic extract of white loose callus,respectively.CONCLUSION Octadecadienoic acid,hexadecanoic acid and methyl ester were the major constituents in the leaf and callus methanolic extract.Octadecadienoic acid was the most common constituent in all samples.The maximum concentration of octadecadienoic acid in leaves,green callus and white loose callus was 21.93%,47.79%and 40.38%,respectively.These findings demonstrate that the concentration of octadecadienoic acid doubles in-vitro compared to in-vivo.In addition to octadecadienoic acid;butyric acid,benzene,1-methoxy-4-(1-propenyl),dospan,tridecanedialdehyde,methylcyclohexenylbutanol,chlorpyrifos,n-secondary terpene diester,anflunine and other important active compounds were also detected.All these components were only available in callus formed in-vitro.This study showed that the callus contained additional botanical characteristics compared with wild plants.Due to the presence of numerous bioactive compounds,the medical use of Vitex for various diseases has been accepted and the plant is considered an important source of therapeutics for research and development.
基金Supported by Scientific Research Project of Dalian Customs(2022DK09).
文摘[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived food.[Methods]The samples were extracted with sodium carbonate buffer solution and ethyl acetate,and analyzed by mass spectrometry after solid phase extraction and high performance liquid chromatography separation.[Results]Ten kinds ofα2-receptor agonists showed a good linear relationship in the range of 1-100μg/mL,with the average recovery of over 69%and the relative standard deviation less than 8.32%.The detection limit of 10 kinds of α_(2)-receptor agonists was up to 1μg/kg.[Conclusions]The method has good selectivity and strong anti-interference ability,and can meet the requirements of 10 kinds ofα2-receptor agonists residues in animal derived food.
基金Supported by the National Science Foundation for Post-doctoral Scientists of China(20070410616)Excellent Youth Foundation of He'nan Scientific Committee(074100510018)~~
文摘[Objective] The inductively coupled plasma mass spectrometry(ICP-MS)was constructed to determine the contents of lead,cadmium,mercury and arsenic in Archyranthes bidentata Blume.[Method]Under the optimum operation condition of ICP-MS,the samples were digested by microwave.The element 114In was taken as an internal standard element to compensate body effect and ICP-MS method was used to determine the contents of lead,cadmium,mercury and arsenic.[Result]For the determined elements,the correlation coefficient(r)of standard curve was over 0.9995 and recovery rate was from 96.7% to 106.4% while RSD was less than 11.2%.The result of determination showed that the heavy metal content in Archyranthes bidentata Blume.beyond standard was serious.[Conclusion]The constructed ICP-MS method with simple operation,rapid response,accuracy and high sensitivity in this experiment could be used for quality control of Chinese medicinal materials by detecting heavy metal contents in different Chinese medicinal materials from original places.
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2014JZ01 and2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by combined flame atomic absorption spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-0.8 mg/L for Cr and 0-0.8 mg/L for Zn, the detection limits of Cr and Zn was 0.0025 mg/L and 0.002 3 mg/L, respectively. Recoveries of 102.4%-103.2% for Cr and 97.7%-98.3% for Zn were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of Cr and Zn in soil samples.
基金This work is supported by the National Natu- ral Science Foundation of China (No.51106146 and No.51036007), China Postdoctoral Science Foundation (No.20100480047 and No.201104326), Chinese Univer- sities Scientific Fund (No.WK2310000010), and Chinese Academy of Sciences.
文摘Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.
文摘A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.