期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow of a Micro-Axial Fan Rotor 被引量:1
1
作者 CHEN Jinxin LAI Huanxin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第4期334-343,共10页
The self-induced unsteadiness in tip leakage flow(TLF)of a micro-axial fan rotor is numerically studied by solving Reynolds-averaged Navier-Stokes equations.The micro-axial fan,which is widely used in cooling systems ... The self-induced unsteadiness in tip leakage flow(TLF)of a micro-axial fan rotor is numerically studied by solving Reynolds-averaged Navier-Stokes equations.The micro-axial fan,which is widely used in cooling systems of electronic devices,has a tip clearance of 6%of the axial chord length of the blade.At the design rotation speed,four cases near the peak efficiency point(PEP)with self-induced unsteadiness and four steady cases which have much weaker pressure fluctuations are investigated.Using the"interface"separating the incoming main flow and the TLF defined by Duet al.[1],an explanation based on the propagation of the low energy spot and its multi-passing through the high gradient zone of the relative total pressure,is proposed to clarify the originating mechanism of the unsteadiness.At the operating points near the PEP,the main flow is weaker than the TLF and the interface moves upstream.The low energy spot which propagates along in the close behind of the interface has opportunity to circulate in the circumferential direction and passes through the sensitive interfaces several times,a slight perturbation therefore may be magnified significantly and develops into the self-induced unsteadiness.The explanation is demonstrated by numerical results. 展开更多
关键词 不稳定性 轴流风机 数值研究 风扇转子 自诱导 泄漏流 微型 叶尖
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部