The crossed micro-bands in the martensite variant pairs of a thermomechanically trained Cu25.66Zn-4.02Al (wt-%) alloy have been studied. It was found that the micro-bands pass through the interface from one martensite...The crossed micro-bands in the martensite variant pairs of a thermomechanically trained Cu25.66Zn-4.02Al (wt-%) alloy have been studied. It was found that the micro-bands pass through the interface from one martensite variant to another and their orientation inside different variants is distinct, which would remain in the parent phase after the reverse transformation and play an important role in the formation of preferential martensite. In fact, the crossed micro-bands are micro-twins for accommodating the stress fields generated during thermomechanically training展开更多
Target made of 2519-T87 aluminum alloy was obliquely impacted by a projectile. Microstructural evolution around the crater was investigated by optical microscopy (OM), transmission electron microscopy (TEM), and e...Target made of 2519-T87 aluminum alloy was obliquely impacted by a projectile. Microstructural evolution around the crater was investigated by optical microscopy (OM), transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD). The micro-hardness distribution near the crater after impact was studied. The results indicate that at the entering stage, the amount of adiabatic shear band (ASB) is the most, and the precipitates are as fine as those of the target material; the micro-hardness is higher than that at the other stages. At the stable-running stage, the amount of ASB reduces as the micro-bands increase; the precipitates tend to coarsen, which leads to the decrease of the micro-hardness. At the leaving stage, there is a large amount of micro-bands; the precipitates are refined, and the micro-hardness is higher than that at the stable-running stage. The difference in the micro-hardness of the impact stages is due to work hardening and precipitate coarsening, which is caused by adiabatic temperature rise in the alloy.展开更多
文摘The crossed micro-bands in the martensite variant pairs of a thermomechanically trained Cu25.66Zn-4.02Al (wt-%) alloy have been studied. It was found that the micro-bands pass through the interface from one martensite variant to another and their orientation inside different variants is distinct, which would remain in the parent phase after the reverse transformation and play an important role in the formation of preferential martensite. In fact, the crossed micro-bands are micro-twins for accommodating the stress fields generated during thermomechanically training
基金Project (201191107) supported by Science and Technology Plan of Xinjiang,China
文摘Target made of 2519-T87 aluminum alloy was obliquely impacted by a projectile. Microstructural evolution around the crater was investigated by optical microscopy (OM), transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD). The micro-hardness distribution near the crater after impact was studied. The results indicate that at the entering stage, the amount of adiabatic shear band (ASB) is the most, and the precipitates are as fine as those of the target material; the micro-hardness is higher than that at the other stages. At the stable-running stage, the amount of ASB reduces as the micro-bands increase; the precipitates tend to coarsen, which leads to the decrease of the micro-hardness. At the leaving stage, there is a large amount of micro-bands; the precipitates are refined, and the micro-hardness is higher than that at the stable-running stage. The difference in the micro-hardness of the impact stages is due to work hardening and precipitate coarsening, which is caused by adiabatic temperature rise in the alloy.