Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range...Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China.展开更多
Japanese Spanish mackerel Scomberomorus niphonius is a pelagic,neritic species that occurs in the Yellow Sea in high commercial value.The spawning period of this fast-growing species is controlled by water temperature...Japanese Spanish mackerel Scomberomorus niphonius is a pelagic,neritic species that occurs in the Yellow Sea in high commercial value.The spawning period of this fast-growing species is controlled by water temperature.Based on microstructural analysis of otoliths from 145 young-of-the-year(YoY)S.niphonius collected by trawl in 2017,2018,and 2020,and the temporal variation in the spawning period in the northern Yellow Sea,and its relationship to water temperature were examined.We found that the spawning lasted from late April to late June but differed in year:in 2017 it occurred from April 23 to June 1 and peaked in early May,in 2018 it extended later from May 7 to June 29,and in 2020 from May 6 to June 22 and peaked later from late May to mid-June.The highest temperature in 2017 corresponds with the earliest end of the spawning period and a lower growing degree-day(GDD,℃·day)of 383℃·day.In 2018,slower warming corresponds with a longer spawning period,and a GDD spawning period of 506℃·day.Rapid warming in late 2020 corresponds with a spawning peak,and a GDD spawning temperature of 448℃·day.Despite differences in spawning period,the water temperature when spawning commenced was 10-12℃.Therefore,water temperature is the major determinant of the spawning period,affecting both the starting and the ending of spawning.This study improved our understanding of the spawning dynamics and environmental adaptation of S.niphonius,and how these might change in environments subject to increased warming.展开更多
Rice grain yield and quality are negatively impacted by high temperature stress.Irrigation water temperature significantly affects rice growth and development,thus influencing yield and quality.The role of cooler irri...Rice grain yield and quality are negatively impacted by high temperature stress.Irrigation water temperature significantly affects rice growth and development,thus influencing yield and quality.The role of cooler irrigation water in counteracting high temperature induced damages in rice grain yield and quality are not explored.Hence,in the present study two rice hybrids,Liangyoupeijiu(LYPJ)and IIyou 602(IIY602)were exposed to heat stress and irrigated with water having different temperatures in a splitsplit plot experimental design.The stress was imposed starting from heading until maturity under field-based heat tents,over two consecutive years.The maximum day temperature inside the heat tents was set at 38℃.For the irrigation treatments,two different water sources were used including belowground water with cooler water temperature and pond water with relatively higher water temperature.Daytime mean temperatures in the heat tents were increased by 1.2–2.0℃ across two years,while nighttime temperature remained similar at both within and outside the heat tents.Cooler belowground water irrigation did have little effect on air temperature at the canopy level but decreased soil temperature(0.2–1.4℃)especially under control.Heat stress significantly reduced grain yield(33%to 43%),panicles m^(-2)(9%to 10%),spikelets m^(-2)(15%to 22%),grain-filling percentage(13%to 26%)and 1000-grain weight(3%to 5%).Heat stress significantly increased chalkiness and protein content and decreased grain length and amylose content.Grain yield was negatively related to air temperature at the canopy level and soil temperature.Whereas grain quality parameters like chalkiness recorded a significantly positive association with both air and soil temperatures.Irrigating with cooler belowground water reduced the negative effect of heat stress on grain yield by 8.8%in LYPJ,while the same effect was not seen in IIY602,indicating cultivar differences in their response to irrigation water temperature.Our findings reveal that irrigating with cooler belowground water would not significantly mitigate yield loss or improve grain quality under realistic field condition.The outcome of this study adds to the scientific knowledge in understanding the interaction between heat stress and irrigation as a mitigation tool.Irrigation water temperature regulation at the rhizosphere was unable to counteract heat stress damages in rice and hence a more integrated management and genetic options at canopy levels should be explored in the future.展开更多
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni...Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan展开更多
Economic development around the Daya Bay, China has profoundly affected the marine environment in the bay area in recent years, particularly since the operation of Daya Bay Nuclear Power Station (DNPS) in 1994. This...Economic development around the Daya Bay, China has profoundly affected the marine environment in the bay area in recent years, particularly since the operation of Daya Bay Nuclear Power Station (DNPS) in 1994. This study analyzed the changes of water temperature and harmful algal blooms (HABs) for two periods: 1983-1993 and 1994-2004, using in situ and satellite data. Results showed that yearly mean surface water temperature (SWT) and Chl-a concentration (Chl-a) increased by 1.1 ℃ and 1.9 mg/m^3, respectively, after 1994. The monthly occurrence of HAB was found to have increased also. HABs appeared only in spring and autumn before 1994, but occurred all the year round after 1994. SWT, Chl-a and HABs all increased significantly in May. Those changes were associated with environmental changes in this area, such as thermal discharge from the DNPS and enhancement of eutrophication from human activities around the Daya Bay.展开更多
This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of ...This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of phytoplankton growth and the different profiles of the change of its assemblage structure influenced by nutrient silicon and water temperature. Taking Jiaozhou Bay for example, this paper showed the process of both the variation of phytoplankton growth and the change of its assemblage structure, unveiled the mechanism of nutrient silicon and water temperature influencing the variation of phytoplankton growth and the change of its assemblage structure, and determined that nutrient silicon and water temperature were the motive power for the healthy running of the marine ecosystem.展开更多
The meteorological data of light,temperature and water during 1961-2009 were selected to analyze the trend variation of climatic resources and provide the basis for developing and utilizing local climate resources.The...The meteorological data of light,temperature and water during 1961-2009 were selected to analyze the trend variation of climatic resources and provide the basis for developing and utilizing local climate resources.The results indicated that light resource presented the decreasing tendency in Dongling District,annual radiation reduced by 528 MJ/m2,and annual sunshine duration decreased by 333 h.The heat resource presented the increasing tendency,the average annual temperature increased by 1.04 ℃,and active accumulated temperature increased by 228 ℃.The general trend of annual precipitation declined slightly,precipitation resource during every age changed slightly and would tend to be stable.展开更多
In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour...In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases.展开更多
Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures...Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer (MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.展开更多
The canopy temperature of rice at the flowering stage and the soil water content were investigated under different soil water treatments (the soil water contents were 24%, 55%, 90% and 175% at the flowering stage). ...The canopy temperature of rice at the flowering stage and the soil water content were investigated under different soil water treatments (the soil water contents were 24%, 55%, 90% and 175% at the flowering stage). The canopy temperature was lower than air temperature, and the soil water content significantly influenced the canopy temperature. The lower the soil water content, the higher the canopy temperature, the less the accumulative absolute value of canopy-air temperature difference. Moreover, the maximum difference between treatments and CK in the accumulative absolute value of canopy-air temperature difference appeared at 13:00 μm. in a day, thus, it could be considered as a suitable measuring time. Under the lowest water content treatment, the peak flowering occurred in the first three days (about 70% of panicles flowered), resulting in shortened and lightened panicle of rice. As to the CK and the high water content treatments, the peak flowering appeared in the middle of flowering duration, with longer panicle length and higher panicle weight. Results indicated the lower the soil water content, the less the filled grain number and grain yield.展开更多
Straw mulching allows for effective water storage in dryland wheat production. Finding a suitable straw mulching model that facilitates wheat growth was the objective of this study. A 2-year field experiment was condu...Straw mulching allows for effective water storage in dryland wheat production. Finding a suitable straw mulching model that facilitates wheat growth was the objective of this study. A 2-year field experiment was conducted to investigate the effects of two straw mulching patterns (FM, full coverage within all the rows; HM, half coverage within alternate rows) and two mulching rates (4.5 and 9.0 t ha^-1) on soil moisture, soil temperature, grain yield, and water use efficiency (WUE) of winter wheat in northern China, with no mulching (M0) as the control. Results showed that mulching increased the soil water storage in all growth stages under high mulching rates, with a stronger effect in later growth stages. Water storage under the HM model was greater in later stages than under the FM model. Soil water content of HM groups was higher than that of FM groups, especially in surface soil layers. Evapotranspiration decreased in mulched groups and was higher under high mulching rates. Aboveground biomass during each growth stage under the HM model was higher than that under M0 and FM models with the same mulched rate, leading to a relatively higher grain yield under the HM model. Mulching increased WUE, a trend that was more obvious under HM9.0 treatment. Warming effect of soil temperature under the HM pattern persisted longer than under the FM model with the same mulching rates. Accumulated soil temperature under mulched treatments increased, and the period of negative soil temperature decreased by 9-12 days under FM and by 10-20 days under HM. Thus, the HM pattern with 9.0 t ha^-1 mulching rate is beneficial for both soil temperature and water content management and can contribute to high yields and high WUE for wheat production in China.展开更多
The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The ma...The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The main products of xylose decomposition were furfural and formic acid, and furfural further degraded to formic acid under HTLW condition. With the assumption of first order kinetics e.quation, the evaluated activation energy of xylose and furfural decomposition was 123.27kJ·mol^-1 and 58.84kJ·mol^-1, respectively.展开更多
Greenhouse tomato plants (Lycopersicon esculentum Mill cv. Capello) were grown on peat-based substrate and treated with high (4.5 mS cm-1) and low (2.3 mS cm-1) nutrient solution electric conductivity(EC) under high a...Greenhouse tomato plants (Lycopersicon esculentum Mill cv. Capello) were grown on peat-based substrate and treated with high (4.5 mS cm-1) and low (2.3 mS cm-1) nutrient solution electric conductivity(EC) under high and low substrate water contents. FOur weeks after the beginning of the treatments, photosynthesis (Th) was measured under different humidity and temperatures to examine the interactive effectswith rhizosphere salinity and water deficit. A rectangular hyperbolic model fitted the light-photosynthesiscurve. Photosynthetic capacity (PC) was decreased but quantum yield (YQ) was increased by rhizospheresalinity caused by high EC. PN was decreased by low humidity only in high EC- and/or water-stressed plants.Under high photosynthetic photon flux (PPF), low humidity induced PC decline in water-stressed plants andPN oscillation in high-EC-treated plants. PN increased steadily as the leaf temperature changed from 18 Cto 23 and then decreased steadily from 23 to 38 . At 34 , PN decreased significantly in waterstressed plants. Dark respiration (RD) increased in an exponential manner as the leaf temperature changedfrom 18 to 38 to an extent about ten times higher under 38 than under 18 . Our data suggestedthat PN decrease under high temperature was attributed, st least in part, to the increased RD. RD in highEC- and/or water-stressed plants was higher than that in the plants of control under lower temperature butlower than that in the plants of control under high temperature. The analysis of stomatal and mesophyllconductance showed that low humidity effect was mainly through stomatal response while temperature effectwas mainly through biochemical functions. The result showed that environmental stresses affected PN in anadditive or synergistic manner.展开更多
Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and...Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and 35 ℃) and water saturation (noninundation and inundation). A significant positive relationship was found between CO2 production and N mineralization under increasing temperatures from 5 to 35 ℃ with the same water saturation condition in the marsh soil (r2 > 0.49, P < 0.0001) and the peat soil (r2 > 0.38, P < 0.002), and a negative relationship with water saturation increasing at the same temperature, especially 25 and 35 ℃, in the marsh soil (r2 > 0.70, P < 0.009) and the peat soil (r2 > 0.61, P < 0.013). In conclusion, temperatures and water saturation could regulate the relationship between CO2 production and net N mineralization in the Tibetan alpine marsh and peat soils.展开更多
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate th...Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H20. The chemical effects of this H20 increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000 ~2050 than between 2050~2100, driven mainly by the larger relative change in chlorine in the earlier period.展开更多
The effect of water temperature on gut mass and digestive enzyme activity in sea cucumber Apostichopusjaponicus, including relative gut mass (RGM), amylase, lipase, pepsin and trypsin activities were studied at temp...The effect of water temperature on gut mass and digestive enzyme activity in sea cucumber Apostichopusjaponicus, including relative gut mass (RGM), amylase, lipase, pepsin and trypsin activities were studied at temperatures of 7, 14, 21, and 28℃ over a period of 40 days. Results show that RGM significantly decreased after 40 days at 21 ℃ and markedly decreased over the whole experiment period at 28℃; however, no significant effect of duration was observed at 7 or 14℃. At 14℃, trypsin activity significantly decreased over 10 and 20 days, then increased; amylase and trypsin activity significantly decreased after 40 days at 28℃. However, no significant effect of duration was found on amylase, pepsin or trypsin activities in the other temperature treatment groups. At 28℃, lipase activity peaked in 20 days and then markedly decreased to a minimum at the end of the experiment. On the other hand, pepsin activity at 28℃ continuously increased over the whole experimental period. Principle component analysis showed that sea cucumbers on day 40 in the 21℃ group and in the previous 20 days in the 28℃ group were in the prophase of aestivation. At 28℃, sea cucumbers aestivated at 30-40 days after the start of the experiment. It is concluded that the effect of temperature on the digestion ofA. japonicus is comparatively weak within a specific range of water temperatures and aestivation behavior is accompanied by significant changes in RGM and digestive enzyme activities.展开更多
Solution-cast films of shape memory polyurethane have been investigated.Differential scanning calorimetry, DMA, tensile test, water vapor permeability and the shape memory effect were carried out to characterize these...Solution-cast films of shape memory polyurethane have been investigated.Differential scanning calorimetry, DMA, tensile test, water vapor permeability and the shape memory effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S-shaped curve, and increases abruptly at T m of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D) are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below T g. The crystalline state hard-segment is necessary for the good shape memory展开更多
Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively...Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant.展开更多
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.
基金This work was jointly supported by the National Natural Science Foundation of China projects[grant numbers 42305178 and U2344224]the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab).
基金the National Natural Science Foundation of China(Grant No.42204006)the Guangxi Natural Science Foundation of China(2020GXNSFBA297145)+1 种基金the“Ba Gui Scholars”program of the provincial government of Guangxi,and Innovation Project of GuangXi Graduate Education(Grant No.YCSW2022322)Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(GrantNo.20-01-03,21-01-04)
文摘Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China.
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41930534)。
文摘Japanese Spanish mackerel Scomberomorus niphonius is a pelagic,neritic species that occurs in the Yellow Sea in high commercial value.The spawning period of this fast-growing species is controlled by water temperature.Based on microstructural analysis of otoliths from 145 young-of-the-year(YoY)S.niphonius collected by trawl in 2017,2018,and 2020,and the temporal variation in the spawning period in the northern Yellow Sea,and its relationship to water temperature were examined.We found that the spawning lasted from late April to late June but differed in year:in 2017 it occurred from April 23 to June 1 and peaked in early May,in 2018 it extended later from May 7 to June 29,and in 2020 from May 6 to June 22 and peaked later from late May to mid-June.The highest temperature in 2017 corresponds with the earliest end of the spawning period and a lower growing degree-day(GDD,℃·day)of 383℃·day.In 2018,slower warming corresponds with a longer spawning period,and a GDD spawning period of 506℃·day.Rapid warming in late 2020 corresponds with a spawning peak,and a GDD spawning temperature of 448℃·day.Despite differences in spawning period,the water temperature when spawning commenced was 10-12℃.Therefore,water temperature is the major determinant of the spawning period,affecting both the starting and the ending of spawning.This study improved our understanding of the spawning dynamics and environmental adaptation of S.niphonius,and how these might change in environments subject to increased warming.
基金provided by Science and Technology Plan Project of Hunan Province(2019RS1054)Open Research Fund of State Key Laboratory of Hybrid Rice provided by Hunan Hybrid Rice Research Center(2018KF05)+4 种基金Scientific Research Fund of Hunan Provincial Education Department(18B109)Scientific Research Funding for Crop Science(YXQN2018-6)Hundred Talents Program of the Hunan Provincethe grant support from Hong Kong Research Grants Council(GRF 12103219 and 12103220 and Ao E/M-403/16)a Scholarship from Hong Kong Scholars Program。
文摘Rice grain yield and quality are negatively impacted by high temperature stress.Irrigation water temperature significantly affects rice growth and development,thus influencing yield and quality.The role of cooler irrigation water in counteracting high temperature induced damages in rice grain yield and quality are not explored.Hence,in the present study two rice hybrids,Liangyoupeijiu(LYPJ)and IIyou 602(IIY602)were exposed to heat stress and irrigated with water having different temperatures in a splitsplit plot experimental design.The stress was imposed starting from heading until maturity under field-based heat tents,over two consecutive years.The maximum day temperature inside the heat tents was set at 38℃.For the irrigation treatments,two different water sources were used including belowground water with cooler water temperature and pond water with relatively higher water temperature.Daytime mean temperatures in the heat tents were increased by 1.2–2.0℃ across two years,while nighttime temperature remained similar at both within and outside the heat tents.Cooler belowground water irrigation did have little effect on air temperature at the canopy level but decreased soil temperature(0.2–1.4℃)especially under control.Heat stress significantly reduced grain yield(33%to 43%),panicles m^(-2)(9%to 10%),spikelets m^(-2)(15%to 22%),grain-filling percentage(13%to 26%)and 1000-grain weight(3%to 5%).Heat stress significantly increased chalkiness and protein content and decreased grain length and amylose content.Grain yield was negatively related to air temperature at the canopy level and soil temperature.Whereas grain quality parameters like chalkiness recorded a significantly positive association with both air and soil temperatures.Irrigating with cooler belowground water reduced the negative effect of heat stress on grain yield by 8.8%in LYPJ,while the same effect was not seen in IIY602,indicating cultivar differences in their response to irrigation water temperature.Our findings reveal that irrigating with cooler belowground water would not significantly mitigate yield loss or improve grain quality under realistic field condition.The outcome of this study adds to the scientific knowledge in understanding the interaction between heat stress and irrigation as a mitigation tool.Irrigation water temperature regulation at the rhizosphere was unable to counteract heat stress damages in rice and hence a more integrated management and genetic options at canopy levels should be explored in the future.
基金This study was supported by grant from the National Natu-ral Science Foundation of China (No. 30271068) the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ
文摘Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan
基金This study was jointly supported by the following funds awarded to Professor Danling TANG:Guangdong Natural Science Foundation(05102008 and 04001306),ChinaKey Innovation Project of Chinese Academy of Sciences(CAS)(KZCX3-SW-227-3)+3 种基金"0ne Hundred Talents Program"of CAS(Ybrjh0403)Authors are grateful to projects of South China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences(2007TS10 and 2007ZD03)High-tech Research and Development Program of China(2006AA100303)Chinese Ecosystem Research Network(http://www.cerndata.ac.cn),Dr.Guifeng WEI of Jinan University and the Key Innovation Project of CAS(KZCX3-SW-214).
文摘Economic development around the Daya Bay, China has profoundly affected the marine environment in the bay area in recent years, particularly since the operation of Daya Bay Nuclear Power Station (DNPS) in 1994. This study analyzed the changes of water temperature and harmful algal blooms (HABs) for two periods: 1983-1993 and 1994-2004, using in situ and satellite data. Results showed that yearly mean surface water temperature (SWT) and Chl-a concentration (Chl-a) increased by 1.1 ℃ and 1.9 mg/m^3, respectively, after 1994. The monthly occurrence of HAB was found to have increased also. HABs appeared only in spring and autumn before 1994, but occurred all the year round after 1994. SWT, Chl-a and HABs all increased significantly in May. Those changes were associated with environmental changes in this area, such as thermal discharge from the DNPS and enhancement of eutrophication from human activities around the Daya Bay.
文摘This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of phytoplankton growth and the different profiles of the change of its assemblage structure influenced by nutrient silicon and water temperature. Taking Jiaozhou Bay for example, this paper showed the process of both the variation of phytoplankton growth and the change of its assemblage structure, unveiled the mechanism of nutrient silicon and water temperature influencing the variation of phytoplankton growth and the change of its assemblage structure, and determined that nutrient silicon and water temperature were the motive power for the healthy running of the marine ecosystem.
文摘The meteorological data of light,temperature and water during 1961-2009 were selected to analyze the trend variation of climatic resources and provide the basis for developing and utilizing local climate resources.The results indicated that light resource presented the decreasing tendency in Dongling District,annual radiation reduced by 528 MJ/m2,and annual sunshine duration decreased by 333 h.The heat resource presented the increasing tendency,the average annual temperature increased by 1.04 ℃,and active accumulated temperature increased by 228 ℃.The general trend of annual precipitation declined slightly,precipitation resource during every age changed slightly and would tend to be stable.
基金Financial support comes from China National Natural Science Foundation(Grant No.51974352)as well as from China University of Petroleum(East China)(Grant Nos.2018000025 and 2019000011)。
文摘In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases.
基金supported by the National Basic Research Program of China(2012CB417001)the National Natural Science Foundation of China(41271125)
文摘Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer (MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.
基金This paper was translated from its Chinese version in Chinese Journal of Rice Science.
文摘The canopy temperature of rice at the flowering stage and the soil water content were investigated under different soil water treatments (the soil water contents were 24%, 55%, 90% and 175% at the flowering stage). The canopy temperature was lower than air temperature, and the soil water content significantly influenced the canopy temperature. The lower the soil water content, the higher the canopy temperature, the less the accumulative absolute value of canopy-air temperature difference. Moreover, the maximum difference between treatments and CK in the accumulative absolute value of canopy-air temperature difference appeared at 13:00 μm. in a day, thus, it could be considered as a suitable measuring time. Under the lowest water content treatment, the peak flowering occurred in the first three days (about 70% of panicles flowered), resulting in shortened and lightened panicle of rice. As to the CK and the high water content treatments, the peak flowering appeared in the middle of flowering duration, with longer panicle length and higher panicle weight. Results indicated the lower the soil water content, the less the filled grain number and grain yield.
基金financially supported by the Key Research and Development Program of Shanxi Province, China (201703D211002-5)the Open Fund of the State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (Y20160019)
文摘Straw mulching allows for effective water storage in dryland wheat production. Finding a suitable straw mulching model that facilitates wheat growth was the objective of this study. A 2-year field experiment was conducted to investigate the effects of two straw mulching patterns (FM, full coverage within all the rows; HM, half coverage within alternate rows) and two mulching rates (4.5 and 9.0 t ha^-1) on soil moisture, soil temperature, grain yield, and water use efficiency (WUE) of winter wheat in northern China, with no mulching (M0) as the control. Results showed that mulching increased the soil water storage in all growth stages under high mulching rates, with a stronger effect in later growth stages. Water storage under the HM model was greater in later stages than under the FM model. Soil water content of HM groups was higher than that of FM groups, especially in surface soil layers. Evapotranspiration decreased in mulched groups and was higher under high mulching rates. Aboveground biomass during each growth stage under the HM model was higher than that under M0 and FM models with the same mulched rate, leading to a relatively higher grain yield under the HM model. Mulching increased WUE, a trend that was more obvious under HM9.0 treatment. Warming effect of soil temperature under the HM pattern persisted longer than under the FM model with the same mulching rates. Accumulated soil temperature under mulched treatments increased, and the period of negative soil temperature decreased by 9-12 days under FM and by 10-20 days under HM. Thus, the HM pattern with 9.0 t ha^-1 mulching rate is beneficial for both soil temperature and water content management and can contribute to high yields and high WUE for wheat production in China.
基金Supported by the National Natural Science Foundation of China (No.20476089) and the Project of the Ministry of Science and Technology of China (No.2004CCA05500).
文摘The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The main products of xylose decomposition were furfural and formic acid, and furfural further degraded to formic acid under HTLW condition. With the assumption of first order kinetics e.quation, the evaluated activation energy of xylose and furfural decomposition was 123.27kJ·mol^-1 and 58.84kJ·mol^-1, respectively.
文摘Greenhouse tomato plants (Lycopersicon esculentum Mill cv. Capello) were grown on peat-based substrate and treated with high (4.5 mS cm-1) and low (2.3 mS cm-1) nutrient solution electric conductivity(EC) under high and low substrate water contents. FOur weeks after the beginning of the treatments, photosynthesis (Th) was measured under different humidity and temperatures to examine the interactive effectswith rhizosphere salinity and water deficit. A rectangular hyperbolic model fitted the light-photosynthesiscurve. Photosynthetic capacity (PC) was decreased but quantum yield (YQ) was increased by rhizospheresalinity caused by high EC. PN was decreased by low humidity only in high EC- and/or water-stressed plants.Under high photosynthetic photon flux (PPF), low humidity induced PC decline in water-stressed plants andPN oscillation in high-EC-treated plants. PN increased steadily as the leaf temperature changed from 18 Cto 23 and then decreased steadily from 23 to 38 . At 34 , PN decreased significantly in waterstressed plants. Dark respiration (RD) increased in an exponential manner as the leaf temperature changedfrom 18 to 38 to an extent about ten times higher under 38 than under 18 . Our data suggestedthat PN decrease under high temperature was attributed, st least in part, to the increased RD. RD in highEC- and/or water-stressed plants was higher than that in the plants of control under lower temperature butlower than that in the plants of control under high temperature. The analysis of stomatal and mesophyllconductance showed that low humidity effect was mainly through stomatal response while temperature effectwas mainly through biochemical functions. The result showed that environmental stresses affected PN in anadditive or synergistic manner.
基金supported by the National Key Basic Research Program of China (973 Program) (No.2005CB422005)the National Natural Science Foundation of China (No.30700108)the Forestry Commonweal Program of China(No.200804005).
文摘Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and 35 ℃) and water saturation (noninundation and inundation). A significant positive relationship was found between CO2 production and N mineralization under increasing temperatures from 5 to 35 ℃ with the same water saturation condition in the marsh soil (r2 > 0.49, P < 0.0001) and the peat soil (r2 > 0.38, P < 0.002), and a negative relationship with water saturation increasing at the same temperature, especially 25 and 35 ℃, in the marsh soil (r2 > 0.70, P < 0.009) and the peat soil (r2 > 0.61, P < 0.013). In conclusion, temperatures and water saturation could regulate the relationship between CO2 production and net N mineralization in the Tibetan alpine marsh and peat soils.
基金supported by National Natural Science Foundation of China (Grant Nos. 40575019, 40730949)the U.K. Natural Environ-ment Research Council (NERC)
文摘Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H20. The chemical effects of this H20 increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000 ~2050 than between 2050~2100, driven mainly by the larger relative change in chlorine in the earlier period.
基金Supported by the Science Fund for Creative Research Groups (No.40821004)National Natural Science Foundation of China (No.40576073)+1 种基金Breeding Project of Shandong Province (China),National Key Technology Research and Development Program of China (No. 2006BAD09A02)the National High Technology Research and Development Program of China (863 Program) (No.2006AA100304 /2006AA10A411)
文摘The effect of water temperature on gut mass and digestive enzyme activity in sea cucumber Apostichopusjaponicus, including relative gut mass (RGM), amylase, lipase, pepsin and trypsin activities were studied at temperatures of 7, 14, 21, and 28℃ over a period of 40 days. Results show that RGM significantly decreased after 40 days at 21 ℃ and markedly decreased over the whole experiment period at 28℃; however, no significant effect of duration was observed at 7 or 14℃. At 14℃, trypsin activity significantly decreased over 10 and 20 days, then increased; amylase and trypsin activity significantly decreased after 40 days at 28℃. However, no significant effect of duration was found on amylase, pepsin or trypsin activities in the other temperature treatment groups. At 28℃, lipase activity peaked in 20 days and then markedly decreased to a minimum at the end of the experiment. On the other hand, pepsin activity at 28℃ continuously increased over the whole experimental period. Principle component analysis showed that sea cucumbers on day 40 in the 21℃ group and in the previous 20 days in the 28℃ group were in the prophase of aestivation. At 28℃, sea cucumbers aestivated at 30-40 days after the start of the experiment. It is concluded that the effect of temperature on the digestion ofA. japonicus is comparatively weak within a specific range of water temperatures and aestivation behavior is accompanied by significant changes in RGM and digestive enzyme activities.
基金TheHongKongPolytechnicUniversity (A .14 .37.PB5 3)
文摘Solution-cast films of shape memory polyurethane have been investigated.Differential scanning calorimetry, DMA, tensile test, water vapor permeability and the shape memory effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S-shaped curve, and increases abruptly at T m of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D) are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below T g. The crystalline state hard-segment is necessary for the good shape memory
基金Projects(40772180, 40572161, 40802064) supported by the National Natural Science Foundation of ChinaProject ([2007]831) supported by Commission of Science, Technology and Industry for National Defense of China+3 种基金Project(07JJ4012) supported by Hunan Provincial Natural Science Foundation of ChinaProject(20080430680) supported by China Postdoctoral Science FoundationProject(08R214155) supported by Shanghai Postdoctoral Scientific Program of ChinaProject(B308) supported by Shanghai Leading Academic Discipline Project of China
文摘Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant.