In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g...In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.展开更多
In order to avoid the loss of ammonia during solar drying of stored urine, low-tech stripping is suggested as a pretreatment process for ammonia recovery. The mass transfer of ammonia from stored urine with an initial...In order to avoid the loss of ammonia during solar drying of stored urine, low-tech stripping is suggested as a pretreatment process for ammonia recovery. The mass transfer of ammonia from stored urine with an initial pH of about 9 was tested in a simple closed vessel operated at 72°C, 74°C and 85°C. The specific urine/gas interface was 16.97 m-1. For ammonia absorption, a beaker with sulfuric acid was positioned in the gas phase of the container. After keeping the stored urine for 73 h at 85°C, the concentration of free ammonia (NH3) was reduced by more than 99%, and the pH of the stored urine decreased to 6.4 due to ammonia volatilization. Total ammonia (NH3+ NH4+) concentration was reduced by only 83% in the same period. At lower temperatures, the process was slower. Required treatment time can be reduced when specific gas/liquid interface is increased. Because it is known that water can be heated in solar boxes to temperatures above 90°C, this simple stripping apparatus is feasible to be operated with solar energy in remote areas with suitable climatic conditions where no electric power is available. As the area demand for solar “low-tech stripping” is less than 1 m2 per capita, this process can be looked at as a suitable pretreatment of stored urine prior to solar evaporation.展开更多
基金supported by Research Project Supported by Horizon Europe Framework Programme(101183092)Shanxi Scholarship Council of China(2023-128)+2 种基金National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618)Small and mediumsized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)。
文摘In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.
文摘In order to avoid the loss of ammonia during solar drying of stored urine, low-tech stripping is suggested as a pretreatment process for ammonia recovery. The mass transfer of ammonia from stored urine with an initial pH of about 9 was tested in a simple closed vessel operated at 72°C, 74°C and 85°C. The specific urine/gas interface was 16.97 m-1. For ammonia absorption, a beaker with sulfuric acid was positioned in the gas phase of the container. After keeping the stored urine for 73 h at 85°C, the concentration of free ammonia (NH3) was reduced by more than 99%, and the pH of the stored urine decreased to 6.4 due to ammonia volatilization. Total ammonia (NH3+ NH4+) concentration was reduced by only 83% in the same period. At lower temperatures, the process was slower. Required treatment time can be reduced when specific gas/liquid interface is increased. Because it is known that water can be heated in solar boxes to temperatures above 90°C, this simple stripping apparatus is feasible to be operated with solar energy in remote areas with suitable climatic conditions where no electric power is available. As the area demand for solar “low-tech stripping” is less than 1 m2 per capita, this process can be looked at as a suitable pretreatment of stored urine prior to solar evaporation.