Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations...Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations are considered: 1) a straight beam with two actuation layers on top and bottom which utilizes the bimorph effect to induce bending;2) a uniform beam with base excitation, where the beam is mounted on an actuator which moves it periodically at its base perpendicular to its axis. Generally, vibrating micro-cantilevers are required to oscillate at a specified frequency. In order to increase the efficiency of the system, and achieve deflections with low power consumption, geometrical features of the beams can be quantified so that the required vibrating frequency matches the natural frequencies of the beam. A parametric modal analysis is conducted on two configurations of micro-cantilever and the first natural frequency of the cantilevers as a function of geometrical parameters is extracted. To evaluate vibrational behavior and thermo-mechanical efficiency of micro-cantilevers as a function of their geometrical parameters and input power, a case study with a specified vibrating frequency is considered. Due to significant complexities in the loading conditions and thermo-mechanical behavior, this task can only be tackled via numerical methods. Selecting the geometrical parameters in order to induce resonance at the nominal frequency, non-linear time-history (transient) thermo-mechanical finite element analysis (using ANSYS) is run on each configuration to study its response to the periodic heating input. Approaches to improve the effectiveness of actuators in each configuration based on their implementation are investigated.展开更多
The relationship between the photothermal cooling efficiency of a micro-cantilever's mechanical mode and the en- vironmental temperature is studied. The micro-cantilever and a polished fiber end form a low finesse Fa...The relationship between the photothermal cooling efficiency of a micro-cantilever's mechanical mode and the en- vironmental temperature is studied. The micro-cantilever and a polished fiber end form a low finesse Fabry-Perot (FP) cavity. Experimental results in a temperature range from 77 K to 298 K show that temperature has an obvious influence on photothermal cooling efficiency. The photothermal cooling efficiency, ηph, at 100 K is 10 times that at 298 K. This accords well with the theoretical analysis that the high photothermal cooling efficiency can be achieved when photothermal response time, τph, and mechanical resonant frequency, ω0, are close to the optimal photothermal cooling condition ω0τph = 1. Our study provides an important approach for high effective photothermal cooling and high-sensitivity measurement for force microscopy.展开更多
We study the effect of surface roughness on the resonance frequency of micro-cantilever sensors. The analysis demonstrates that surface roughness can enhance, decrease or even annul the effect of surface stress on the...We study the effect of surface roughness on the resonance frequency of micro-cantilever sensors. The analysis demonstrates that surface roughness can enhance, decrease or even annul the effect of surface stress on the resonance frequency, depending on the surface inclination angle and the Poisson ratio of the coating film on the cantilever.展开更多
The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is...The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is not available. In this paper, a systematic method of generating polynomials which are the exact beam solutions of the loads with di?erent distributions is provided. The polynomials are used to approximate the beam displacement due to electrostatic force. The equilibrium equation o?ers an answer to how the beam deforms but no information about the unstuck length. The derivative of the functional with respect to the unstuck length o?ers such information. But to compute the functional it is necessary to know the beam deformation. So the problem is iteratively solved until the results are converged. Galerkin and Newton-Raphson methods are used to solve this nonlinear problem. The e?ects of dielectric layer thickness and electrostatic voltage on the cantilever beam stiction are studied. The method provided in this paper exhibits good convergence. For the adhesion problem of cantilever beam without electrostatic voltage, the analytical solution is available and is also exactly matched by the computational results given by the method presented in this paper.展开更多
The micro-cantilever beam with a twin long period optic fiber grating sensitive to the strain and the vibration is designed to use as the sensor head.The micro-displacement of wavelength caused by strain or vibration ...The micro-cantilever beam with a twin long period optic fiber grating sensitive to the strain and the vibration is designed to use as the sensor head.The micro-displacement of wavelength caused by strain or vibration is amplified in the system.Special cladding material is used to eliminate the interference brougth about the temperature.The designing structure is enabled to detect the micro-information.展开更多
In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulate...In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulated by tuning the cavity resonance. When the laser power increases across the threshold value of 110 ?W, optomechanical bistability is induced by strong static photothermal backaction at room temperature. Numerical calculation revealed that the bistable effect originates from the multi-well potential created via the optomechanical interaction. Switching of the cantilever between the bistable states was achieved by tuning the cavity to the corresponding boundaries of the bistable region, where the barrier between the bistable states vanishes.展开更多
The abnormal bending of a micro-cantilever plate induced by a droplet is of great interest and of significance in micro/nano-manipulations. In this study, the physical mechanism of this abnormal phenomenon induced by ...The abnormal bending of a micro-cantilever plate induced by a droplet is of great interest and of significance in micro/nano-manipulations. In this study, the physical mechanism of this abnormal phenomenon induced by an actual droplet is elucidated. Firstly, the morphologies of 2D and 3D droplets axe solved analytically or numerically. Then the Laplace pressure difference acting on the cantilever plate caused by the droplet is presented. Finally, the deflections of the micro-cantilever plates driven by the capillary forces are quantitatively analyzed. These analytical results may be beneficial to some engineering applications, such as micro-sensors, MEMS and the micro/nano-measurement.展开更多
文摘Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations are considered: 1) a straight beam with two actuation layers on top and bottom which utilizes the bimorph effect to induce bending;2) a uniform beam with base excitation, where the beam is mounted on an actuator which moves it periodically at its base perpendicular to its axis. Generally, vibrating micro-cantilevers are required to oscillate at a specified frequency. In order to increase the efficiency of the system, and achieve deflections with low power consumption, geometrical features of the beams can be quantified so that the required vibrating frequency matches the natural frequencies of the beam. A parametric modal analysis is conducted on two configurations of micro-cantilever and the first natural frequency of the cantilevers as a function of geometrical parameters is extracted. To evaluate vibrational behavior and thermo-mechanical efficiency of micro-cantilevers as a function of their geometrical parameters and input power, a case study with a specified vibrating frequency is considered. Due to significant complexities in the loading conditions and thermo-mechanical behavior, this task can only be tackled via numerical methods. Selecting the geometrical parameters in order to induce resonance at the nominal frequency, non-linear time-history (transient) thermo-mechanical finite element analysis (using ANSYS) is run on each configuration to study its response to the periodic heating input. Approaches to improve the effectiveness of actuators in each configuration based on their implementation are investigated.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922101)
文摘The relationship between the photothermal cooling efficiency of a micro-cantilever's mechanical mode and the en- vironmental temperature is studied. The micro-cantilever and a polished fiber end form a low finesse Fabry-Perot (FP) cavity. Experimental results in a temperature range from 77 K to 298 K show that temperature has an obvious influence on photothermal cooling efficiency. The photothermal cooling efficiency, ηph, at 100 K is 10 times that at 298 K. This accords well with the theoretical analysis that the high photothermal cooling efficiency can be achieved when photothermal response time, τph, and mechanical resonant frequency, ω0, are close to the optimal photothermal cooling condition ω0τph = 1. Our study provides an important approach for high effective photothermal cooling and high-sensitivity measurement for force microscopy.
基金supported by the National Natural Science Foundation of China (Grant Nos10525209,10872003 and10932001)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD,Grant No2007B2)+1 种基金Research Fund for the New Teacher Program of the State Education Ministry of China (Grant No200800011011)Scientific Research Foundation for the Returned Overseas Chinese Scholars State Education Ministry of China
文摘We study the effect of surface roughness on the resonance frequency of micro-cantilever sensors. The analysis demonstrates that surface roughness can enhance, decrease or even annul the effect of surface stress on the resonance frequency, depending on the surface inclination angle and the Poisson ratio of the coating film on the cantilever.
文摘The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is not available. In this paper, a systematic method of generating polynomials which are the exact beam solutions of the loads with di?erent distributions is provided. The polynomials are used to approximate the beam displacement due to electrostatic force. The equilibrium equation o?ers an answer to how the beam deforms but no information about the unstuck length. The derivative of the functional with respect to the unstuck length o?ers such information. But to compute the functional it is necessary to know the beam deformation. So the problem is iteratively solved until the results are converged. Galerkin and Newton-Raphson methods are used to solve this nonlinear problem. The e?ects of dielectric layer thickness and electrostatic voltage on the cantilever beam stiction are studied. The method provided in this paper exhibits good convergence. For the adhesion problem of cantilever beam without electrostatic voltage, the analytical solution is available and is also exactly matched by the computational results given by the method presented in this paper.
文摘The micro-cantilever beam with a twin long period optic fiber grating sensitive to the strain and the vibration is designed to use as the sensor head.The micro-displacement of wavelength caused by strain or vibration is amplified in the system.Special cladding material is used to eliminate the interference brougth about the temperature.The designing structure is enabled to detect the micro-information.
基金supported by the National Basic Research Program of China(Grant No.2012CB922104)the National Natural Science Foundation of China(Grant Nos.11204357,11174027 and 11121403)
文摘In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulated by tuning the cavity resonance. When the laser power increases across the threshold value of 110 ?W, optomechanical bistability is induced by strong static photothermal backaction at room temperature. Numerical calculation revealed that the bistable effect originates from the multi-well potential created via the optomechanical interaction. Switching of the cantilever between the bistable states was achieved by tuning the cavity to the corresponding boundaries of the bistable region, where the barrier between the bistable states vanishes.
基金Project supported by the National Natural Science Foundation of China (No. 10802099)the Doctoral Fund of Ministry of Education of China (No. 200804251520)the Natural Science Foundation of Shandong Province (No. 2009ZRA05008)
文摘The abnormal bending of a micro-cantilever plate induced by a droplet is of great interest and of significance in micro/nano-manipulations. In this study, the physical mechanism of this abnormal phenomenon induced by an actual droplet is elucidated. Firstly, the morphologies of 2D and 3D droplets axe solved analytically or numerically. Then the Laplace pressure difference acting on the cantilever plate caused by the droplet is presented. Finally, the deflections of the micro-cantilever plates driven by the capillary forces are quantitatively analyzed. These analytical results may be beneficial to some engineering applications, such as micro-sensors, MEMS and the micro/nano-measurement.