期刊文献+
共找到16,784篇文章
< 1 2 250 >
每页显示 20 50 100
Chemical Scissors Tailored Nano‑Tellurium with High‑Entropy Morphology for Efficient Foam‑Hydrogel‑Based Solar Photothermal Evaporators
1
作者 Chenyang Xing Zihao Li +4 位作者 Ziao Wang Shaohui Zhang Zhongjian Xie Xi Zhu Zhengchun Peng 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期149-168,共20页
The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(... The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions. 展开更多
关键词 TELLURIUM High entropy Electrochemical modification Solar absorption evaporation rate
下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting
2
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Nitrogen-doped microporous graphite-enhanced copper plasmonic effect for solar evaporation
3
作者 Xintao Wu Chengcheng Li +7 位作者 Ziqi Zhang Yang Cao Jieqiong Wang Xinlong Tian Zhongxin Liu Yijun Shen Mingxin Zhang Wei Huang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期215-223,共9页
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp... Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity. 展开更多
关键词 NANOCONFINEMENT photothermal conversion materials plasmonic resonance seawater desalination solar evaporation
下载PDF
Evaluation of Water Losses by Evaporation in the Nakanbe Basin
4
作者 Bayala Alfred Kabre Sayouba +5 位作者 Yonli Hamma Fabien Chesneau Xavier Thierry Sikoudouin Maurice Ky Zeghmati Belkacem Kieno P. Florent Kam Sié 《Atmospheric and Climate Sciences》 2024年第1期29-41,共13页
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e... A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020. 展开更多
关键词 Numerical Study evaporATION Meteorological Data Natural Convection BASINS DAMS
下载PDF
Recentadvancesincarbon‐basedmaterials for solar‐driven interfacial photothermal conversion water evaporation:Assemblies,structures,applications,and prospective 被引量:4
5
作者 Yanmin Li Yanying Shi +4 位作者 Haiwen Wang Tiefeng Liu Xiuwen Zheng Shanmin Gao Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期101-142,共42页
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la... The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology. 展开更多
关键词 APPLICATIONS carbon‐based materials evaporATOR photothermal conversion water evaporation
下载PDF
INFLUENCE OF REFRIGERANT DISTRIBUTION ON HEAT TRANSFER IN EVAPORATORS
6
作者 高原 田怀璋 +1 位作者 曾艳 袁秀玲 《Journal of Pharmaceutical Analysis》 SCIE CAS 2003年第1期10-14,共5页
Objective To prevent the maldistribution of two phase refrigerant in dry expansion evaporators composed of parallel coils, a distributor is needed to supply refrigerant into the coils. Methods A simplified model of... Objective To prevent the maldistribution of two phase refrigerant in dry expansion evaporators composed of parallel coils, a distributor is needed to supply refrigerant into the coils. Methods A simplified model of dry expansion evaporator was proposed. The flow and heat transfer in distributing pipes and evaporator coils were simulated with a numerical method. Results The heat flow rate decreases while the refrigerant is distributed unequally to evaporator coils. Conclusion In order to maintain the heat flow rate, larger heat transfer area should be arranged to make up the effect of maldistribution. The larger the discrepancy of mass flow rate is, the more heat transfer area is needed. 展开更多
关键词 DISTRIBUTOR CAPILLARY evaporATOR numerical simulation
下载PDF
A Biomass-Based Hydrogel Evaporator Modified Through Dynamic Regulation of Water Molecules:Highly Efficient and Cost-Effective 被引量:1
7
作者 Boqiu Luo Jin Wen +5 位作者 Hao Wang Size Zheng Rui Liao Wenjing Chen Omid Mahian Xiaoke Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期20-30,共11页
Solar-driven hydrogel evaporator used for water purification demonstrates great potential in seawater desalination and domestic sewage treatment.However,much uncertainty still exists about the most efficient design to... Solar-driven hydrogel evaporator used for water purification demonstrates great potential in seawater desalination and domestic sewage treatment.However,much uncertainty still exists about the most efficient design to obtain cost-effective drinkable water.In this paper,a natural rich biomass Nicandra physalodes(Linn.)Gaertn.polysaccharide was introduced into the polyvinyl alcohol network to control the water distribution during evaporation and build a low-cost hybrid hydrogel solar evaporator with a total material cost of$7.95 m^(−2).The mixed evaporator works stably in a long-span acid–base range(pH 1–14)and salinity range(0–320 g kg^(−1)).Its daily water purification capacity can reach 24.4 kg m^(−2)with a water purification capacity of 3.51 kg m^(−2)h^(−1)under sunlight.This paper provides a new possibility for a highly efficient and cost-effective water desalination system with guaranteed water quality by focusing on the dynamic regulation of water molecules at the evaporation interface. 展开更多
关键词 DESALINATION HYDROGELS interfacial evaporation POLYSACCHARIDE solar energy
下载PDF
Experimental Investigation on the Effection of Flow Regulator in a Multiple Evaporators/Condensers Loop Heat Pipe with Plastic Porous Structure
8
作者 Xinyu Chang H. Nagano 《Journal of Power and Energy Engineering》 2014年第9期49-56,共8页
Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multipl... Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0&deg;C/60&deg;C and the two evaporators’ heat load 30/30 W. 展开更多
关键词 Flow Regulator Loop HEAT Pipe MULTIPLE evaporators and CONDENSERS TWO-PHASE HEAT Transfer
下载PDF
Operating Characteristics of Multiple Evaporators and Multiple Condensers Loop Heat Pipe with Polytetrafluoroethylene Wicks
9
作者 Sho Okutani Hosei Nagano +2 位作者 Shun Okazaki Hiroyuki Ogawa Hiroki Nagai 《Journal of Electronics Cooling and Thermal Control》 2014年第1期22-32,共11页
This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condens... This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condensers in a loop heat pipe in order to adapt to various changes of thermal condition in spacecraft. The PTFE porous media was used as the primary wicks to reduce heat leak from evaporators to compensation chambers. The tests were conducted under an atmospheric condition. In the tests that heat loads are applied to both evaporators, the MLHP was stably operated as with a LHP with a single evaporator and a single condenser. The relation between the sink temperature and the thermal resistance was experimentally evaluated. In the test with the heat load to one evaporator, the heat transfer from the heated evaporator to the unheated evaporator was confirmed. In the heat load switching test, in which the heat load is switched from one evaporator to another evaporator repeatedly, the MLHP could be stably operated. The loop operation with the large temperature difference between the heat sinks was also tested. From this result, the stable operation of the MLHP in the various conditions was demonstrated. It was also found that a flow regulator which prevents the uncondensed vapor from the condensers is required at the inlet of the common liquid line when one condenser has higher temperature and cannot condense the vapor in it. 展开更多
关键词 LOOP HEAT PIPE MULTIPLE evaporators MULTIPLE CONDENSERS Thermal Control TWO-PHASE HEAT Transfer
下载PDF
Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler
10
作者 Tiezhu Sun Huan Sun +2 位作者 Tingzheng Tang Yongcheng Yan Peixuan Li 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2519-2531,共13页
The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need... The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)). 展开更多
关键词 Tubular indirect evaporative cooler integrated convection heat transfer coefficient evaporative cooling thermal engineering calculation energy saving
下载PDF
A Model for Droplet Evaporation
11
作者 Pirooz Mohazzabi Gabrielle A. Richardson Gwendolyn A. Richardson 《Journal of Applied Mathematics and Physics》 2023年第7期1837-1845,共9页
Based on the kinetic theory of gases, a simple model for droplet vaporization, in particular mercury, is developed to study the variation of droplet radius as a function of time. This model is in agreement with more s... Based on the kinetic theory of gases, a simple model for droplet vaporization, in particular mercury, is developed to study the variation of droplet radius as a function of time. This model is in agreement with more sophisticated models for water, such as the kinetic model and the Kulmala model. Findings indicate that complete evaporation of a 1-mm-radius mercury droplet, in a ventilated room at normal temperatures, should take about 1.8 × 10<sup>4</sup> seconds or 5 hours. The findings of this study can be utilized to direct further research in the field of toxin remediation. 展开更多
关键词 evaporATION RATE MERCURY DROPLET RADIUS
下载PDF
Janus membrane with enhanced interfacial activation for solar evaporation
12
作者 Hao Chen Guangze Pan +3 位作者 Mei Yan Fang Wang Yadong Wu Chongshen Guo 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期1-11,I0002,共12页
Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To ove... Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To overcome these problems,we designed an amphiphilic Janus-structured polyaniline(PANI)/ZrC/cellulose acetate(CA)(J-PZCA) membrane.Firstly,the interfacial interaction between PANI and ZrC enhances the photoabsorption and photothermal conversion efficiency.Secondly,low thermal conductivity reduces the heat lost at the interface.Most importantly,ZrC could facilitate interfacial activation,which weakens the intermolecular forces of water by affecting the hydrogen bond.Under 1 solar irradiation(1 sun),the composite membrane exhibits a high evaporation rate of 1.31 kg m^(-2)h^(-1) and an excellent efficiency of 79.4%.In addition,the sewage purification and seawater desalination experiments reveal a remarkable purification capability of J-PZCA membrane.Especially for the treatment of high-concentration salt solution,it realizes a long-term stable evaporation performance due to the excellent salt deposition resistance.Therefore,the J-PZCA membrane constructed in this study provides a new perspective for the design of efficient interfacial evaporation devices. 展开更多
关键词 Interfacial water evaporation Photothermal synergy Interfacial activation ZRC PANI
下载PDF
Influence of Evaporating Under the Clouds on the Precipitation Stable Isotope in the Transition Zone Between Tibetan Plateau and Arid Region of China
13
作者 GUI Juan LI Zongxing +3 位作者 DU Fa ZHANG Baijuan XUE Jian CUI Qiao 《Chinese Geographical Science》 SCIE CSCD 2023年第4期764-778,共15页
Consideration of stable isotopes in precipitation is valuable for investigating hydrological processes.Therefore,correcting the measured isotopic composition of precipitation under below-cloud evaporation is necessary... Consideration of stable isotopes in precipitation is valuable for investigating hydrological processes.Therefore,correcting the measured isotopic composition of precipitation under below-cloud evaporation is necessary.An accurate description of the underlying processes affecting stable isotopic composition of precipitation could help improve our understanding of the water cycle.The transitivity between monsoonal and arid climates was reflected by the evaporation rate of falling raindrops in precipitation in the Qilian Mountains,a typical transition zone between Tibetan Plateau and arid region of China.Considering 1310 precipitation event-scale samples,based on stable isotope analysis method,the mean below-cloud evaporation rate(f)in the study area was measured as 12.00%during the summer half-year(May-October).The evaporation rate on the northern slopes(12.70%)of the Qilian Mountains in China was significantly higher than that on the southern slopes(9.98%).The transition between monsoonal and arid climates was reflected in the evaporation rate of falling raindrops during precipitation in the Qilian Mountains of China.Below-cloud evaporation contributed to a noticeable enrichment of stable isotopes in the precipitation in the study area.The monthly precipitationδ^(18)O enrichment rate in the Qilian Mountains of China from May to October was 29.18%,23.35%,25.60%,22.99%,31.64%,and 14.72%,respectively.For every 1.00%increase in the evaporation rate of raindrops in Qilian Mountains of China,the changes in the concentration of oxygen isotopes from the bottom of the clouds to the ground increased by 0.92‰;however,with an evaporation rate of<5.00%,for every 1.00%increase in the evaporation rate of raindrops the changes in the concentration of oxygen isotopes from the bottom of the clouds to the ground increased by 1.00‰could also be observed.Furthermore,altitude was an important factor affecting below-cloud evaporation in the study area. 展开更多
关键词 below-cloud evaporation stable isotopes transition zone Qilian Mountains of China
下载PDF
Effect of an Internal Heat Exchanger on the Performances of a Double Evaporator Ejector Refrigeration Cycle
14
作者 Rachedi Khadraoui Latra Boumaraf Philippe Haberschill 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1115-1128,共14页
A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by... A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%. 展开更多
关键词 Refrigeration cycle double evaporator EJECTOR IHX performance improvement environment-friendlyrefrigerants
下载PDF
Facile synthesis of chromium chloride/poly(methyl methacrylate) core/shell nanocapsules by inverse miniemulsion evaporation method and application as delayed crosslinker in secondary oil recovery
15
作者 Jing-Yang Pu Keith P.Johnston +4 位作者 Ping-Keng Wu Muaaz Ahmad Ming-Liang Luo Na Zhang Ju-Tao He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期396-406,共11页
Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not lo... Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not long enough for in-depth placement.In this study,we report a novel synthesis method to obtain chromium chloride/poly(methyl methacrylate)(PMMA)nanocapsules which can significantly delay the gelation of HPAM through encapsulating the chromium chloride crosslinker.The chromium chloride-loaded nanocapsules(CreNC)are prepared via a facile inverse miniemulsion evaporation method during which the hydrophobic PMMA polymers,pre-dispersed in an organic solvent,were carefully controlled to precipitate onto stable aqueous miniemulsion droplets.The stable aqueous nanodroplets(W)containing Cr(III)are dispersed in a mixture of organic solvent(O1)with PMMA and nonsolvent medium(O2)to prepare an inverse miniemulsion.With the evaporation of the O1,PMMA forms CreNCs around the aqueous droplets.The CreNCs are readily transferred into water from the organic nonsolvent phase.The CreNCs exhibit the tunable size(358-983 nm),Cr loading(7.1%-19.1%),and Cr entrapment efficiency(11.7%-80.2%),with tunable zeta potentials in different PVA solutions.The CreNCs can delay release of Cr(III)and prolong the gelation time of HPAM up to 27 days. 展开更多
关键词 NANOCAPSULES Inverse miniemulsion evaporation Chromium chloride crosslinker HPAM gelation Secondary oil recovery
下载PDF
Boosting extraction of Pb in contaminated soil via interfacial solar evaporation of multifunctional sponge
16
作者 Pan Wu Xuan Wu +3 位作者 Yida Wang Jingyuan Zhao Haolan Xu Gary Owens 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1459-1468,共10页
Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a s... Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a sodium alginate(SA)impregnated sponge with a surface layer of reduced graphene oxide(rGO)to act as a photothermal conversion medium and then subsequently evaluated for its ability to enhance Pb extraction from contaminated soil driven by interfacial solar evaporation.The SA loaded sponge had a Pb adsorption capacity of 107.4 mg g^(-1).Coating the top surface of the SA sponge with rGO increased water evaporation performance to 1.81 kg m^(-2)h^(-1)in soil media under one sun illumination and with a wind velocity of 2 m s^(-1).Over 12 continuous days of indoor evaporation testing,the Pb extraction efficiency was increased by 22.0%under 1 sun illumination relative to that observed without illumination.Subsequently,Pb extraction was further improved by 48.9%under outdoor evaporation conditions compared to indoor conditions.Overall,this initial work shows the significant potential of interfacial solar evaporation technologies for Pb contaminated soil remediation,which should also be applicable to a variety of other environmental contaminants. 展开更多
关键词 Photothermal materials Interfacial solar evaporation Reduced graphene oxide Pb extraction Soil remediation
下载PDF
Micro–Nano Water Film Enabled High‑Performance Interfacial Solar Evaporation
17
作者 Zhen Yu Yuqing Su +3 位作者 Ruonan Gu Wei Wu Yangxi Li Shaoan Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期503-517,共15页
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable... Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications. 展开更多
关键词 Micro–nano water film Interfacial solar evaporation Solar desalination Artificial neural networks PPy sponge
下载PDF
Controllable growth of wafer-scale PdS and PdS_(2) nanofilms via chemical vapor deposition combined with an electron beam evaporation technique
18
作者 Hui Gao Hongyi Zhou +6 位作者 Yulong Hao Guoliang Zhou Huan Zhou Fenglin Gao Jinbiao Xiao Pinghua Tang Guolin Hao 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期64-71,共8页
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd... Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices. 展开更多
关键词 PDS PdS_(2) NANOFILMS controllable growth chemical vapor deposition electron beam evaporation
下载PDF
Evaporative Cooling Applied in Thermal Power Plants:A Review of the State-ofthe-Art and Typical Case Studies
19
作者 Tiantian Liu Huimin Pang +7 位作者 Suoying He Bin Zhao Zhiyu Zhang Jucheng Wang Zhilan Liu Xiang Huang Yuetao Shi Ming Gao 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2229-2265,共37页
A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-coo... A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption. 展开更多
关键词 Direct evaporative cooling cooling tower cooling performance wet media nozzle spray thermal power plants
下载PDF
Experimental study on the desulfurization and evaporation characteristics of Ca(OH)_(2) droplets
20
作者 Yilin Song Yize Zhang Hao Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期127-135,共9页
The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisper... The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisperse slurry droplet stream was injected into the evaporation reaction chamber, and the inlet gas components(air, air + SO_(2)) were introduced into the chamber. We applied the magnified digital in-line holography to measure the droplet parameters and calculated the evaporation rate. The effects of temperature, droplet concentration, and SO_(2) concentration on the evaporation rate of Ca(OH)_(2) droplets were discussed. Moreover, the Ca(OH)_(2) droplets under different experimental conditions were sampled,and the droplets were observed and analyzed using an off-line microscope. The evaporation rate of the Ca(OH)_(2) droplet increased at first, and then decreased during the falling process, and remained constant at last. The average evaporation rate of the Ca(OH)_(2) droplets increased significantly with the temperature increasing. 展开更多
关键词 Magnified digital in-line holography evaporATION Gas–liquid absorption reaction Ca(OH)_(2) Micro-droplet
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部