The pulse time of arrival (TOA) is a determining parameter for accurate timing and positioning in X-ray pulsar navigation. The pulse TOA can be calculated by comparing the measured arrival time with the predicted ar...The pulse time of arrival (TOA) is a determining parameter for accurate timing and positioning in X-ray pulsar navigation. The pulse TOA can be calculated by comparing the measured arrival time with the predicted arrival time of the X-ray pulse for pulsar. In this study, in order to research the measurement of pulse arrival time, an experimental system is set up. The experimental system comprises a simulator of the X-ray pulsar, an X-ray detector, a time-measurement system, and a data-processing system. An X-ray detector base is proposed on the basis of the micro-channel plate (MCP), which is sensitive to soft X-ray in the 1–10 keV band. The MCP-based detector, the structure and principle of the experimental system, and results of the pulse profile are described in detail. In addition, a discussion of the effects of different X-ray pulse periods and the quantum efficiency of the detector on pulse-profile signal-to-noise ratio (SNR) is presented. Experimental results reveal that the SNR of the measured pulse profile becomes enhanced as the quantum efficiency of the detector increases. The SNR of the pulse profile is higher when the period of the pulse is smaller at the same integral.展开更多
A dilation X-ray detector(DIXD)based on time dilation and microchannel plate(MCP)gated technology has been reported.The DIXD passes a driving pulse along the transmission photocathode(PC)to obtain a dilated electron s...A dilation X-ray detector(DIXD)based on time dilation and microchannel plate(MCP)gated technology has been reported.The DIXD passes a driving pulse along the transmission photocathode(PC)to obtain a dilated electron signal and finally achieves a high time resolution of 12 ps.Furthermore,the waveform of the PC driving pulse can be obtained using the DIXD,and a DIXD oscillographic function can be obtained.An experiment is presented to demonstrate the DIXD oscilloscope.The waveform of the PC driving pulse from points t_(1) to t_(12) is achieved by the DIXD.The waveform agrees well with that measured by a high-speed oscilloscope with a difference of less than 6%.The maximum theoretical bandwidth of the DIXD oscilloscope is theoretically studied.The bandwidth is limited by the potential difference between the PC and mesh.When the potential difference is 3.4 kV,the theoretical limiting bandwidth is 1000 GHz.The bandwidth increases with an increase in the potential difference.展开更多
A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-ge...A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.展开更多
In this paper, the detection efficiency of a large area neutron sensitive microchannel plate detector has been evaluated. A ^6LiF/ZnS scintillator detector 65 mm in diameter and 0.32 mm in thickness, with product code...In this paper, the detection efficiency of a large area neutron sensitive microchannel plate detector has been evaluated. A ^6LiF/ZnS scintillator detector 65 mm in diameter and 0.32 mm in thickness, with product code,EJ426HD2, produced by Eljen Technology, was employed as the benchmark detector. The TOF spectra of these two detectors were simultaneously measured and the energy spectra were then deduced to calculate the detection efficiency curve of the ^nMCP detector. Tests show the detection efficiency@25.3 me V thermal neutrons is 34% for this ^nMCP detector.展开更多
“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the...“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the universe.Also,they are being increasingly used in other disciplines like nuclear power generation,life sciences,environmental sciences,medical sciences,etc.The article reviews the short history,recent development,and trend of nuclear detection and readout techniques,covering Semiconductor Detector,Gaseous Detector,Scintillation Detector,Cherenkov Detector,Transition Radiation Detector,and Readout Techniques.By explaining the principle and using examples,we hope to help the interested reader underst and this research field and bring exciting information to the community.展开更多
As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive ima...As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive image intensifier has been developed and demonstrated to achieve good spatial resolution and timing resolution.However,the influence of the working voltage on the performance of the neutron-sensitive imaging intensifier has not been studied.To optimize the performance of the neutron-sensitive image intensifier at different voltages,experiments have been performed at the China Spallation Neutron Source(CSNS)neutron beamline.The change in the light yield and imaging quality with different voltages has been acquired.It is shown that the image quality benefits from the high gain of the microchannel plate(MCP)and the high accelerating electric field between the MCP and the screen.Increasing the accelerating electric field is more effective than increasing the gain of MCPs for the improvement of the imaging quality.Increasing the total gain of the MCP stack can be realized more effectively by improving the gain of the standard MCP than that of the n MCP.These results offer a development direction for image intensifiers in the future.展开更多
A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensional Vernier anode are introduced in detail. A photon countin...A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensional Vernier anode are introduced in detail. A photon counting imaging system was built based on a Vernier anode. The image of very weak optical radiation can be reconstructed by image processing in a period of integration time. The resolution is superior to 100 μm according to the resolution test. The detector may realize the imaging of very weak particle flow of highenergy photons, electrons and ions, so it can be used for high-energy physics, deep space exploration, spectral measurement and bio-luminescence detection.展开更多
文摘The pulse time of arrival (TOA) is a determining parameter for accurate timing and positioning in X-ray pulsar navigation. The pulse TOA can be calculated by comparing the measured arrival time with the predicted arrival time of the X-ray pulse for pulsar. In this study, in order to research the measurement of pulse arrival time, an experimental system is set up. The experimental system comprises a simulator of the X-ray pulsar, an X-ray detector, a time-measurement system, and a data-processing system. An X-ray detector base is proposed on the basis of the micro-channel plate (MCP), which is sensitive to soft X-ray in the 1–10 keV band. The MCP-based detector, the structure and principle of the experimental system, and results of the pulse profile are described in detail. In addition, a discussion of the effects of different X-ray pulse periods and the quantum efficiency of the detector on pulse-profile signal-to-noise ratio (SNR) is presented. Experimental results reveal that the SNR of the measured pulse profile becomes enhanced as the quantum efficiency of the detector increases. The SNR of the pulse profile is higher when the period of the pulse is smaller at the same integral.
基金supported by the Program for National Natural Science Foundation of China(NSFC)(11775147)Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515011474 and2019A1515110130)Shenzhen Science and Technology Program(Nos.JCYJ20210324095007020,JCYJ20200109105201936,and JCYJ20190808115605501)。
文摘A dilation X-ray detector(DIXD)based on time dilation and microchannel plate(MCP)gated technology has been reported.The DIXD passes a driving pulse along the transmission photocathode(PC)to obtain a dilated electron signal and finally achieves a high time resolution of 12 ps.Furthermore,the waveform of the PC driving pulse can be obtained using the DIXD,and a DIXD oscillographic function can be obtained.An experiment is presented to demonstrate the DIXD oscilloscope.The waveform of the PC driving pulse from points t_(1) to t_(12) is achieved by the DIXD.The waveform agrees well with that measured by a high-speed oscilloscope with a difference of less than 6%.The maximum theoretical bandwidth of the DIXD oscilloscope is theoretically studied.The bandwidth is limited by the potential difference between the PC and mesh.When the potential difference is 3.4 kV,the theoretical limiting bandwidth is 1000 GHz.The bandwidth increases with an increase in the potential difference.
基金supported by the National Natural Science Foundation of China(Nos.11605248,11605249,11605267,and 11805032.)
文摘A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.
基金Supported by National Natural Science Foundation of China(11375095,11175098)
文摘In this paper, the detection efficiency of a large area neutron sensitive microchannel plate detector has been evaluated. A ^6LiF/ZnS scintillator detector 65 mm in diameter and 0.32 mm in thickness, with product code,EJ426HD2, produced by Eljen Technology, was employed as the benchmark detector. The TOF spectra of these two detectors were simultaneously measured and the energy spectra were then deduced to calculate the detection efficiency curve of the ^nMCP detector. Tests show the detection efficiency@25.3 me V thermal neutrons is 34% for this ^nMCP detector.
基金supported by the National Natural Science Foundation of China(No.12222512,U2032209,12075045,12335011,1875097,11975257,62074146,11975115,12205374,12305210,11975292,12005276,12005278,12375193,12227805,12235012,12375191,12005279)the National Key Research and Development Program of China(2021YFA1601300)+13 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34000000)the CAS Pioneer Hundred Talent Programthe CAS“Light of West China”Programthe Natural Science Foundation of Liaoning Province(No.101300261)the Dalian Science and Technology Innovation Fund(2023JJ12GX013)the Special Projects of the Central Government in Guidance of Local Science and Technology Development(Research and development of three-dimensional prospecting technology based on Cosmic-ray muons)(YDZX20216200001297)the Science and Technology Planning Project of Gansu(20JR10RA645)the Lanzhou University Talent Cooperation Research Funds sponsored by both Lanzhou City(561121203)the Gansu provincial science and technology plan projects for talents(054000029)the Beijing Natural Science Foundation(No.1232033)the Beijing Hope Run Special Fund of Cancer Foundation of China(No.LC2021B23)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210009)the Youth Innovation Promotion Association CAS(2021450)。
文摘“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the universe.Also,they are being increasingly used in other disciplines like nuclear power generation,life sciences,environmental sciences,medical sciences,etc.The article reviews the short history,recent development,and trend of nuclear detection and readout techniques,covering Semiconductor Detector,Gaseous Detector,Scintillation Detector,Cherenkov Detector,Transition Radiation Detector,and Readout Techniques.By explaining the principle and using examples,we hope to help the interested reader underst and this research field and bring exciting information to the community.
基金Project supported by the National Key R&D Program of China (Grant Nos.2023YFC2206502 and 2021YFA1600703)the National Natural Science Foundation of China (Grant Nos.12175254 and 12227810)the Guangdong–Hong Kong–Macao Joint Laboratory for Neutron Scattering Science and Technology。
文摘As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive image intensifier has been developed and demonstrated to achieve good spatial resolution and timing resolution.However,the influence of the working voltage on the performance of the neutron-sensitive imaging intensifier has not been studied.To optimize the performance of the neutron-sensitive image intensifier at different voltages,experiments have been performed at the China Spallation Neutron Source(CSNS)neutron beamline.The change in the light yield and imaging quality with different voltages has been acquired.It is shown that the image quality benefits from the high gain of the microchannel plate(MCP)and the high accelerating electric field between the MCP and the screen.Increasing the accelerating electric field is more effective than increasing the gain of MCPs for the improvement of the imaging quality.Increasing the total gain of the MCP stack can be realized more effectively by improving the gain of the standard MCP than that of the n MCP.These results offer a development direction for image intensifiers in the future.
基金Supported by Key Program of National Natural Science Foundation of China (10878005)
文摘A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensional Vernier anode are introduced in detail. A photon counting imaging system was built based on a Vernier anode. The image of very weak optical radiation can be reconstructed by image processing in a period of integration time. The resolution is superior to 100 μm according to the resolution test. The detector may realize the imaging of very weak particle flow of highenergy photons, electrons and ions, so it can be used for high-energy physics, deep space exploration, spectral measurement and bio-luminescence detection.