期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Increasing the Efficiency and Level of Environmental Safety of Pro-Environmental City Heat Supply Technologies by Low Power Nuclear Plants
1
作者 Vladimir Kravchenko Igor Kozlov +3 位作者 Volodymyr Vashchenko Iryna Korduba Andrew Overchenko Serhii Tsybytovskyi 《World Journal of Nuclear Science and Technology》 CAS 2024年第2期107-117,共11页
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ... In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers. 展开更多
关键词 Low-Capacity Nuclear power Plants Environmental Friendliness of the Thermal power generation Mode heat generation Condensation Mode heat Supply
下载PDF
Optimal Scheduling Method of Cogeneration System with Heat Storage Device Based on Memetic Algorithm 被引量:1
2
作者 Haibo Li YibaoWang +2 位作者 Xinfu Pang Wei Liu Xu Zhang 《Energy Engineering》 EI 2023年第2期317-343,共27页
Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To imp... Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To improve the wind-power absorption capacity and operating economy of the system,the structure of the system is improved by adding a heat storage device and an electric boiler.First,aiming at the minimum operating cost of the system,the optimal scheduling model of the cogeneration system,including a heat storage device and electric boiler,is constructed.Second,according to the characteristics of the problem,a cultural gene algorithm program is compiled to simulate the calculation example.Finally,through the system improvement,the comparison between the conditions before and after and the simulation solutions of similar algorithms prove the effectiveness of the proposed scheme.The simulation results show that adding the heat storage device and electric boiler to the scheduling optimization process not only improves the wind power consumption capacity of the cogeneration system but also reduces the operating cost of the system by significantly reducing the coal consumption of the unit and improving the economy of the system operation.The cultural gene algorithm framework has both the global evolution process of the population and the local search for the characteristics of the problem,which has a better optimization effect on the solution. 展开更多
关键词 Combined heat and power generation heat storage device memetic algorithm simulated annealing wind abandonment
下载PDF
Analysis on optimal working fluid flowrate and unstable power generation for miniaturized ORC systems 被引量:1
3
作者 刘克涛 朱家玲 +1 位作者 胡开永 吴秀杰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1224-1231,共8页
For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a va... For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution. 展开更多
关键词 organic Rankine cycle (ORC) plate heat exchanger optimal working fluid flowrate unstable power generation
下载PDF
Experimental Study on the Performance of ORC System Based on Ultra-Low Temperature Heat Sources
4
作者 Tianyu Zhou Liang Hao +2 位作者 Xin Xu Meng Si Lian Zhang 《Energy Engineering》 EI 2024年第1期145-168,共24页
This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th... This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%. 展开更多
关键词 ORC load percentage of simulated heat source resistive load rotary valve opening power generation
下载PDF
Improving the performance of a thermoelectric power system using a flat-plate heat pipe 被引量:8
5
作者 Suchen Wu Yiwen Ding +1 位作者 Chengbin Zhang Dehao Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期44-53,共10页
A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimen... A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation. 展开更多
关键词 THERMOELECTRIC heat PIPE heat SPREADER power generation
下载PDF
In-Situ Preparation and Thermal Shock Resistance of Mullite-Cordierite Heat Tube Material for Solar Thermal Power 被引量:6
6
作者 徐晓虹 MA Xionghua +3 位作者 WU Jianfeng CHEN Ling XU Tao ZHANG Mengqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期407-412,共6页
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sint... In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material. 展开更多
关键词 solar thermal power generation heat transfer tube MULLITE-CORDIERITE composite ceramic
下载PDF
Diesel generator exhaust heat recovery fully-coupled with intake air heating for off-grid mining operations:An experimental,numerical,and analytical evaluation
7
作者 Durjoy Baidya Marco Antonio Rodrigues de Brito +1 位作者 Agus PSasmito Seyed Ali Ghoreishi-Madiseh 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期155-169,共15页
The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills i... The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions. 展开更多
关键词 Remote mines Waste heat utilization Diesel exhaust Combined heat and power generation Clean energy in mining Coupled heating system
下载PDF
A Thermoelectric Generator Manufacture Research Based on Oscillating-Flow Heat Pipe Technology
8
作者 Jieting Wei Yu Gu Yang Liu 《Energy and Power Engineering》 2013年第4期237-240,共4页
Oscillating heat pipe is a new type of heat transfer. It not only has simple structure, non-pollution and low maintenance cost, but also has high heat transfer efficiency. Semiconductor thermoelectric generation techn... Oscillating heat pipe is a new type of heat transfer. It not only has simple structure, non-pollution and low maintenance cost, but also has high heat transfer efficiency. Semiconductor thermoelectric generation technology is also an environmental technology. This article combines these two kinds of technology. By means of this generate electricity way, we make a set of system and the related experiment. Then we do some research on the feasibility of this system. 展开更多
关键词 OSCILLATING heat PIPE THERMOELECTRIC power generation SOLAR Energy
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
9
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 Combined cooling heating and power (CCHP) Air-cooled microturbines Distributed energy generation Water for energy production Net metering
下载PDF
Piezoelectric Power Harvesting Process via Phase Changes of Low-Boiling-Point Medium Together with Water for Recovering Low-Temperature Heats
10
作者 Seiichi Deguchi Akinori Miyajima +8 位作者 Hajime Arimura Haruna Banno Noriyuki Kobayashi Norifumi Isu Kentaro Takagi Tsuyoshi Inoue Takashi Nozoe Seigo Saito Takahiko Sano 《Journal of Power and Energy Engineering》 2018年第11期65-77,共13页
Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures l... Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC. 展开更多
关键词 PIEZOELECTRIC power generation LOW-TEMPERATURE heat Recovery BIPHASIC MEDIUM Phase Change Multiphase Flow power Harvesting
下载PDF
Further Stabilization and Power Density Improvement of Stack-Type Thermoelectric Power Generating Module with Biphasic Medium by Using Various Flexible Metals as Electrodes
11
作者 Seiichi Deguchi Shoichiro Imaizumi +5 位作者 Hajime Arimura Keisuke Sawada Noriyuki Kobayashi Norifumi Isu Kenji Sakai Kentaro Kimoto 《Journal of Power and Energy Engineering》 2018年第11期78-86,共9页
In order to realize further stability of a stack-type thermoelectric power generating module (i.e. no electrical connections inside), flexible materials of metal springs and/or rods having restoring forces were instal... In order to realize further stability of a stack-type thermoelectric power generating module (i.e. no electrical connections inside), flexible materials of metal springs and/or rods having restoring forces were installed between lower-temperature-sides of thermoelectric elements. These flexible materials were expected to play three important roles of interpolating different thermal expansions of the module components, enlarging heat removal area and penetration of any media through themselves. Then, a low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) was also applied for a high-speed direct heat removal via its phase change from the lower-temperature-sides of the thermoelectric elements in the proposing stack-type thermoelectric power generating module. No electrical disconnections inside the module were confirmed for more than 9 years of use, indicating further module stability. The power generating density was improved to about 120 mW·m-2 with SUS304 springs having 0.7 mm diameter. Increasing power generating density can be expected in terms of suitable selection of flexible metal with high Vickers hardness, cavities control on the spring surface, more vigorous multiphase flow with adding powders to the medium and optimization of the module configurations according to numerical simulations. 展开更多
关键词 Thermoelectric power generation Stack-Type MODULE FLEXIBLE Section BIPHASIC MEDIUM Phase Change Multi-Phase Flow heat Transfer Enhancement MODULE STABILIZATION
下载PDF
Nanofluidic osmotic power generation from CO_(2) with cellulose membranes
12
作者 Chang Chen Xueli Liu +6 位作者 Renxing Huang Kuankuan Liu Shangfa Pan Junchao Lao Qi Li Jun Gao Lei Jiang 《Green Carbon》 2023年第1期58-64,共7页
The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via... The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via the reverse electrodialysis process.In principle,any chemicals that can be converted to ions can be used for nanofluidic power generation.In this work,we demonstrate the power generation from the diffusion of CO_(2) into air using nanofluidic cellulose membranes.By dissolving CO_(2) in water,a power density of 87 mW/m^(2) can be achieved.Using monoethanolamine solutions to dissolve CO_(2),the power density can be increased to 2.6 W/m^(2).We further demonstrate that the waste heat released in industrial and carbon capture processes,can be simultaneously harvested with our nanofluidic membranes,increasing the power density up to 16 W/m^(2) under a temperature difference of 30°C.Therefore,our work should expand the application scope of nanofluidic osmotic power generation and contribute to carbon utilization and capture technologies. 展开更多
关键词 Nanofluidics Osmotic power generation CO_(2)utilization cellulose membranes waste heat utilization
原文传递
A review of low-temperature heat recovery technologies for industry processes 被引量:13
13
作者 Li Xia Renmin Liu +4 位作者 Yiting Zeng Peng Zhou Jingjing Liu Xiaorong Cao Shuguang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2227-2237,共11页
The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that... The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects. 展开更多
关键词 LOW-TEMPERATURE heat heat PUMP power generation heat STORAGE REFRIGERATION
下载PDF
Integration of Low-level Waste Heat Recovery and Liquefied Nature Gas Cold Energy Utilization 被引量:16
14
作者 白菲菲 张早校 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期95-99,共5页
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen... Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively. 展开更多
关键词 recovery of low-level waste heat LNG cold energy utilization power generation cascade utilization
下载PDF
Power generation and heat sink improvement characteristics of recooling cycle for thermal cracked hydrocarbon fueled scramjet 被引量:7
15
作者 BAO Wen QIN Jiang +2 位作者 ZHOU WeiXing ZHANG Duo YU DaRen 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第4期955-963,共9页
In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat ... In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat to electricity and the fuel heat sink increase in recooling cycle are experimentally investigated for fuel conversion rate and components of gas cracked fuel products at different fuel temperatures.The results indicate that the total fuel heat sink(i.e.,physical+chemical+recooling) of a recooling cycle is obviously higher than the heat sink of fuel itself,and the maximum heat sink increment is as high as 0.4 MJ/kg throughout the recooling cycle.Furthermore,the cracked fuel mixture has a significant capacity of doing work.The thermodynamic power generation scheme,which adopts the cracked fuel gas mixture as the working fluid,is a potential power generation cycle,and the maximum specific power generation is about 500 kW/kg.Turbine-pump scheme using cracked fuel gas mixture is also a potential fuel feeding cycle. 展开更多
关键词 recooling cycle SCRAMJET heat sink power generation thermal cracking
原文传递
Working fluids of a low-temperature geothermally-powered Rankine cycle for combined power and heat generation system 被引量:4
16
作者 GUO Tao WANG HuaiXin ZHANG ShengJun 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第11期3072-3078,共7页
A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger an... A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The advantages of the novel combined power and heat generation system are free of using additional cooling water circling system for the power generation subsystem as well as maximizing the use of thermal energy in the low-temperature geothermal source. The main purpose is to identify suitable working fluids (wet, isentropic and dry flu-ids) which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Parameters under investigation were evaporating temperature, PPR value and QQR value. Results indicate that there exits an optimum evaporating temperature to maximize the PPR value and minimize the QQR value at the same time for individual fluid. And dry fluids show higher PPR values but lower QQR values. NH3 and R152a outstand among wet fluids. R134a out-stands among isentropic fluids. R236ea, R245ca, R245fa, R600 and R600a outstand among dry fluids. R236ea shows the highest PPR value among the recommended fluids. 展开更多
关键词 organic Rankine cycle(ORC) low-temperature geothermal working fluids power generation heat production heat pump
原文传递
Collaborative Planning of Distributed Wind Power Generation and Distribution Network with Large-scale Heat Pumps 被引量:6
17
作者 Quansheng Cui Xiaomin Bai Weijie Dong 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第3期335-347,共13页
With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in po... With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in power grid upgrades,which bring opportunities for renewable power generation integration.The combination of heating by distributed renewable energy with the flexible operation of heat pumps is a feasible alternative for dealing with grid reinforcement challenges resulting from heating electrification.In this paper,a mathematical model of the collaborative planning of distributed wind power generation(DWPG)and distribution network with large-scale heat pumps is developed.In this model,the operational flexibility of the heat pump load is fully considered and the requirements of a comfortable indoor temperature are met.By applying this model,the goals of not only increasing the profit of DWPG but also reducing the cost of the power grid upgrade can be achieved. 展开更多
关键词 Collaborative planning distribution network distributed wind power generation large-scale distributed heat pumps
原文传递
Performance analysis and improvement of geothermal binary cycle power plant in oilfield 被引量:4
18
作者 李太禄 朱家玲 张伟 《Journal of Central South University》 SCIE EI CAS 2013年第2期457-465,共9页
In order to improve the efficiency of a geothermal power plant, oil wells in the high water cut stage were used as geothermal wells, thereby improving the recovery ratio and economic benefit. A new function that refle... In order to improve the efficiency of a geothermal power plant, oil wells in the high water cut stage were used as geothermal wells, thereby improving the recovery ratio and economic benefit. A new function that reflects both the technical and economic performances was put forward and used as the objective function. An organic Rankine cycle (ORC) was analyzed through the energetic and exergetic analyses, and the reasons for low efficiency were pinpointed. Results indicate that geothermal water directly transferring heat to the working fluid reduces energy dissipation and increases cycle efficiencies. The net power output with an internal heat exchanger (IHE) is averagely 5.3% higher than that without an IHE. R601a and R601 can be used to replace R123 for geothermal water below 110℃. Moreover, the modified ORC dramatically outperforms the actual one. 展开更多
关键词 geothermal power generation organic Rankine cycle energetic and exergetic analyses OILFIELD internal heat exchanger
下载PDF
Analysis of heat flow diagram of small-scale power generation system:Innovative approaches for improving techno-economic and ecological indices 被引量:2
19
作者 SHAGDAR Enkhbayar SHUAI Yong +3 位作者 GUENE LOUGOU Bachirou GANBOLD Enkhjin CHINONSO Ogugua Paul TAN HePing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第11期2256-2274,共19页
In this paper,the heat flow diagram of steam turbine model K-6-35 has been analyzed for innovative approaches towards improving the techno-economic and ecological indices of the small-scale power generation system.The... In this paper,the heat flow diagram of steam turbine model K-6-35 has been analyzed for innovative approaches towards improving the techno-economic and ecological indices of the small-scale power generation system.The numerical analysis is performed using IPSEpro process simulation software based on heat balance method under four different cases.It was found that the study of Solar Assisted Power Generation(SAPG)system has important practical significance in power generation with minimum pollutants and maximum efficiency.Both fuel-saving(FS)and power-boosting(PB)operation modes of the SAPG system are considered.Various types of stand-alone solar thermal power plants exhibited very low overall efficiency with many ecological advantages compared to the conventional thermal power plant based on fossil fuels.Besides,SAPG system with FS mode presented higher techno-economic indices and operation performance.An important reduction in fuel consumption and pollutant emissions could be obtained with SAPG system.Considering the hourly,daily,monthly,and yearly amount of saved fuel and reduced pollutants in the whole power plant,the SAPG system with FS mode can largely contribute to high ecological indices power generation.A thermal efficiency increased by 1.31%with specific equivalent fuel consumption decreased by 22.54 g/kWh was obtained with SAPG system.The coal consumption was reduced by 4.75%when SAPG system operates in FS mode. 展开更多
关键词 heat flow diagram solar assisted power generation parabolic trough collector solar thermal power plant techno-economic indices genetic algorithm
原文传递
Thermo-economic analysis of a direct supercritical CO_(2) electric power generation system using geothermal heat 被引量:1
20
作者 Xingchao WANG Chunjian PAN +4 位作者 Carlos EROMERO Zongliang QIAO Arindam BANERJEE Carlos RUBIO-MAYA Lehua PAN 《Frontiers in Energy》 SCIE CSCD 2022年第2期246-262,共17页
A comprehensive thermo-economic model combining a geothermal heat mining system and a direct supercritical CO_(2) turbine expansion electric power generation system was proposed in this paper.Assisted by this integrat... A comprehensive thermo-economic model combining a geothermal heat mining system and a direct supercritical CO_(2) turbine expansion electric power generation system was proposed in this paper.Assisted by this integrated model,thermo-economic and optimization analyses for the key design parameters of the whole system including the geothermal well pattern and operational conditions were performed to obtain a minimal levelized cost of electricity(LCOE).Specifically,in geothermal heat extraction simulation,an integrated wellbore-reservoir system model(T2Well/ECO_(2)N)was used to generate a database for creating a fast,predictive,and compatible geothermal heat mining model by employing a response surface methodology.A parametric study was conducted to demonstrate the impact of turbine discharge pressure,injection and production well distance,CO_(2) injection flowrate,CO_(2) injection temperature,and monitored production well bottom pressure on LCOE,system thermal efficiency,and capital cost.It was found that for a 100 MWe power plant,a minimal LCOE of$0.177/kWh was achieved for a 20-year steady operation without considering CO_(2) sequestration credit.In addition,when CO_(2) sequestration credit is$1.00/t,an LCOE breakeven point compared to a conventional geothermal power plant is achieved and a breakpoint for generating electric power generation at no cost was achieved for a sequestration credit of $2.05/t. 展开更多
关键词 geothermal heat mining supercritical CO_(2) power generation thermo-economic analysis optimization
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部