对采用5层叠焊的微通道无氧铜热沉冷却的巴条激光器进行了流体动力学(CFD)分析。建立了条宽10 mm、腔长1.5 mm巴条芯片的流固耦合共轭传热模型,得到了不同流量水冷下激光器的热阻和压力损失曲线。分析了300 m L/min水流时,激光器的温度...对采用5层叠焊的微通道无氧铜热沉冷却的巴条激光器进行了流体动力学(CFD)分析。建立了条宽10 mm、腔长1.5 mm巴条芯片的流固耦合共轭传热模型,得到了不同流量水冷下激光器的热阻和压力损失曲线。分析了300 m L/min水流时,激光器的温度分布和冷却水的流动性能。实验条件下,测试了该微通道热沉封装的808 nm巴条激光器的热阻和压力损失。数值计算和实验测试所得的结果一致,在300 m L/min水流下,巴条热阻为0.38℃/W,在温度不高于70℃时可满足连续模式下90 W的散热要求。展开更多
文摘对采用5层叠焊的微通道无氧铜热沉冷却的巴条激光器进行了流体动力学(CFD)分析。建立了条宽10 mm、腔长1.5 mm巴条芯片的流固耦合共轭传热模型,得到了不同流量水冷下激光器的热阻和压力损失曲线。分析了300 m L/min水流时,激光器的温度分布和冷却水的流动性能。实验条件下,测试了该微通道热沉封装的808 nm巴条激光器的热阻和压力损失。数值计算和实验测试所得的结果一致,在300 m L/min水流下,巴条热阻为0.38℃/W,在温度不高于70℃时可满足连续模式下90 W的散热要求。