The micro-cracking behaviors of two high-entropy alloys(HEAs) of the FeMnCoCrNi family prepared by selective laser melting were systematically studied. Residual stresses were also analyzed by X-ray diffraction techniq...The micro-cracking behaviors of two high-entropy alloys(HEAs) of the FeMnCoCrNi family prepared by selective laser melting were systematically studied. Residual stresses were also analyzed by X-ray diffraction technique. Results show that the equiatomic FeMnCoCrNi HEAs with a relatively stable single-phase face-centered cubic(FCC) structure suffered from micro-cracking with residual tensile stress after laser melting. In contrast, the metastable non-equiatomic Fe MnCoCr HEAs with reduced stacking fault energy are free of micro-cracks with residual compressive stress at various volumetric energy densities(VEDs). The displacive transformation from the FCC matrix to the hexagonal close-packed(HCP) phase during cooling prevents the micro-cracking via consuming thermal stress related internal energy. Further, the displacive transformation during tensile deformation contributes to the higher strength and ductility of the metastable dual-phase HEA compared to that of the stable single-phase HEA. These findings provide useful guidance for the design of strong, ductile, and crack-free alloys for additive manufacturing by tuning phase stability.展开更多
In the light of the problem of weak reflection signals shielded by strong reflections from the concrete surface,the detection and the recognition of hidden micro-cracks in the shield tunnel lining were studied using t...In the light of the problem of weak reflection signals shielded by strong reflections from the concrete surface,the detection and the recognition of hidden micro-cracks in the shield tunnel lining were studied using the orthogonal matching pursuit and the Hilbert transform(OMHT method).First,according to the matching pursuit algorithm and the strong reflection-forming mechanism,and based on the sparse representation theory,a sparse dictionary,adapted to the characteristics of the strong reflection signal,was selected,and a matching decomposition of each signal was performed so that the weak target signal submerged in the strong reflection was displayed more strongly.Second,the Hilbert transform was used to extract multiple parameters,such as the instantaneous amplitude,the instantaneous frequency,and the instantaneous phase,from the processed signal,and the ground penetrating radar(GPR)image was comprehensively analyzed and determined from multiple angles.The results show that the OMHT method can accurately weaken the effect of the strong impedance interface and effectively enhance the weak reflected signal energy of hidden micro-crack in the shield tunnel segment.The resolution of the processed GPR image is greatly improved,and the reflected signal of the hidden micro-crack is easily visible,which proves the validity and accuracy of the analysis method.展开更多
We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates a...We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates and composite laminates are established by ABAQUS software,where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage.The interactions between the S0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method.Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes,and sum and difference frequencies are extracted and simulated.Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes.There is a positive correlation among crack length,height,and sum and difference frequency amplitudes for an aluminum plate,with both amplitudes decreasing as crack thickness increased,i.e.,nonlinear effect weakens as the micro-crack becomes thicker.The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates.Furthermore,amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.展开更多
A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In ...A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In this study,a back-surface micro-crack is considered as a research target.A roughness-modified ultrasonic testing model for micro-cracks is established based on a multi-Gaussian beam model and the principle of phase-screen approximation.The echo signals of micro-cracks and noises corresponding to different rough front surfaces and rough back surfaces are obtained based on a reference reflector signal acquired from a two-dimensional simulation model.Further compari-son between the analytical and numerical models shows that the responses of micro-cracks under the effects of dif-ferent corroded rough surfaces can be accurately predicted.The numerical and analytical results show that the echo signal amplitude of the micro-crack decreases significantly with an increase in roughness,whereas the noise ampli-tude slightly increases.Moreover,the effect of the rough front surface on the echo signal of the micro-crack is greater than that of the rough back surface.When the root-mean-square(RMS)height of the surface microtopography is less than 15μm,the two rough surfaces have less influence on the echo signals detected by a focused transducer with a frequency of 5 MHz and diameter of 6 mm.A method for predicting and evaluating the detection accuracy of micro-cracks under different rough surfaces is proposed by combining the theoretical model and a finite element simulation.Then,a series of rough surface samples containing different micro-cracks are fabricated to experimentally validate the evaluation method.展开更多
Standards of highway conservation and maintenance are improved gradually following the improvement of requirements of road service. Before obvious damage such as obvious cracking (block,transverse, longitudinal ) and ...Standards of highway conservation and maintenance are improved gradually following the improvement of requirements of road service. Before obvious damage such as obvious cracking (block,transverse, longitudinal ) and rutting emerge, inconspicuous distress (micro-cracks, polishing, pockmarked) is generated previously. These inconspicuous distresses may provide basis and criteria for pavement preventive maintenance. Currently most of preventive conservation measures are determined by experienced experts in maintenance and repair of road after site visits. Thus method is difficult in operation, and has a certain amount of instability as it is based on experience and personal knowledge. In this paper, camera and laser were used for automated high-speed acquisition images. Methods to preprocess pavement image are compared. The pretreatment method suitable for analyze micro-cracks picture is elected, an effective way to remove shadow is also proposed.展开更多
In this work, we wish to demonstrate that a reaction path as the following, dislocations, deformations due to thermodynamic stress and, finally, micro-crack occurrence, can enhance the process of fusion of the deutero...In this work, we wish to demonstrate that a reaction path as the following, dislocations, deformations due to thermodynamic stress and, finally, micro-crack occurrence, can enhance the process of fusion of the deuterons introduced into the lattice by deuterium loading. In fact, calculating the rate of deuteron-plasmon-deuteron fusion within a micro-crack, showed, together with an enhancement of the tunneling effect, an increase of at least 2-3 orders of magnitude compared to the probability of fusion on the no deformed lattice. In fact, strong electric fields can take place in the micro-crack and the deuterons are accelerated to the energy which are enough for the D-D tunnelling. These phenomena open the way to the theoretical hypothesis that a kind of chain reaction, catalyzed by the micro-cracks produced in the structure as a result of deuterium loading, can favour the process of deuteron-plasmon fusion.展开更多
This communication seeks to demonstrate that, at room temperature, the deformation of the crystalline lattice can influence the process of interaction of deuterons introduced within it. Calculations of this probabilit...This communication seeks to demonstrate that, at room temperature, the deformation of the crystalline lattice can influence the process of interaction of deuterons introduced within it. Calculations of this probability, in fact, showed an increase of at least 2-3 orders of magnitude with respect to the probability of fusion on the surface of the lattice. These phenomena open the way to the theoretical hypothesis of a kind of chain reaction, as a result of the deuterium loading and catalysed by micro-cracks formed in the structure by micro-explosions, can favour the process.展开更多
The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental r...The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental results indicate that the internal fatigue micro crack clearly evolves from the original penny shaped crack into a string of spherical voids in the longitudinal section plane of the fatigue sample after the vacuum diffusive healing at the high temperature. The quantitative relationship between the radius and the spacing of spherical voids depends on the crack position (within grains, on grain boundaries or transgranular sites) and its orientations within the grain. The diffusive healing, the related thermodynamics and mechanism, and the effect of the surface tension anisotropy on the relationship between void diameter and void spacing are also discussed.展开更多
The initial micro-cracks affect the evolution characteristics of macroscopic deformation and failure of rock but are often ignored in theoretical calculation,numerical simulation,and mechanical experiments.In this stu...The initial micro-cracks affect the evolution characteristics of macroscopic deformation and failure of rock but are often ignored in theoretical calculation,numerical simulation,and mechanical experiments.In this study,we propose a quantitative analysis model to investigate the effects of initial micro-cracks on the evolution of marble deformation and failure.The relationship between the micro-crack propagation and the marble failure characteristics was comprehensively studied by combining theoretical analysis with a micro-computed tomography(micro-CT)scanning technique.We found that with the increase of confining pressure,the matrix elastic modulus of the marble first increased and then tended to be stable,while the micro-cracks increased exponentially.The sensitivity ranges of the marble sample matrix elastic modulus and micro-cracks to confining pressure were 0–30 MPa and 30–50 MPa,respectively.The porosity and Poisson’s ratio decreased exponentially.The increasing proportion of internal micro-cracks led to an increase in the sample non-uniformity.The samples presented mainly shear failure under triaxial compression,and the failure angle decreased linearly with the increase of confining pressure.The convergence direction of cracks decreased gradually.This quantitative analysis model could accurately portray the relationship between the overall macroscopic deformation and the deviatoric stress of the samples at the compaction and the linear elastic stages,thus deepening the understanding of the stress–strain behavior of rocks.展开更多
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani...Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.展开更多
The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault...The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault damage and has been much less investigated than the surface damage.The main contribution of this study is to compare the results of direct shear tests conducted on saw-cut planar joints and tension-induced rough granite joints under normal stresses ranging from 1 MPa to 50 MPa.The shear-induced off-fault damages are quantified and compared with the optical microscope observation.Our results clearly show that the planar joints slip stably under all the normal stresses except under 50 MPa,where some local fractures and regular stick-slip occur towards the end of the test.Both post-peak stress drop and stick-slip occur for all the rough joints.The residual shear strength envelopes for the rough joints and the peak shear strength envelope for the planar joints almost overlap.The root mean square(RMS)of asperity height for the rough joints decreases while it increases for the planar joint after shear,and a larger normal stress usually leads to a more significant decrease or increase in RMS.Besides,the extent of off-fault damage(or damage zone)increases with normal stress for both planar and rough joints,and it is restricted to a very thin layer with limited micro-cracks beneath the planar joint surface.In comparison,the thickness of the damage zone for the rough joints is about an order of magnitude larger than that of the planar joints,and the coalesced micro-cracks are generally inclined to the shear direction with acute angles.The findings obtained in this study contribute to a better understanding on the frictional behavior and damage characteristics of rock joints or fractures with different roughness.展开更多
【目的】研究硅藻土对硅酸钠的吸附效果,探讨油井水泥环微裂缝的修复问题。【方法】采用硅酸钠作为自愈合剂,硅藻土为载体,利用真空浸渍法制备硅藻土基自愈合材料;借助扫描电子显微镜(scanning electron microscope,SEM)、红外光谱仪(in...【目的】研究硅藻土对硅酸钠的吸附效果,探讨油井水泥环微裂缝的修复问题。【方法】采用硅酸钠作为自愈合剂,硅藻土为载体,利用真空浸渍法制备硅藻土基自愈合材料;借助扫描电子显微镜(scanning electron microscope,SEM)、红外光谱仪(infrared spectrometer,FTIR)、全自动表面积和孔结构分析仪(automatic surface area and pore structure analyzer,BET)进行分析;通过对比分析掺入硅藻土基自愈合材料前、后水泥石的抗压强度、恢复率和渗透率等,对自愈合效果进行评价;通过对水泥石裂缝表面物质进行X射线衍射分析(X-ray diffraction,XRD)、热重分析(thermal analysis,TG)和SEM分析评价材料的自愈合机制。【结果】利用真空浸渍法能够成功制得硅藻土基自愈合材料;硅藻土基自愈合材料在油井水泥中最佳掺量为9%(质量分数),该试样劈裂造缝后自愈合14 d的抗压强度比纯水泥的提高99.57%,自愈合14 d后渗透率为0.42 mD,渗透率降低率达到75.44%,比纯水泥试样的高40.94%,且自愈合14 d后裂缝表面已经闭合。【结论】硅藻土基自愈合材料制备工艺简单,在油井水泥浆中具有良好的分散性和稳定性,可以促进油井水泥石微裂缝自愈合。展开更多
基金financial support of the National Natural Science Foundation of China (51505166,51971248)the Huxiang Young Talents Project (2018RS3007,2019RS1001)+1 种基金the Innovation-Driven Project of Central South University,China (2020CX023)Science and Technology Project of Hunan Province (2020GK2031)。
文摘The micro-cracking behaviors of two high-entropy alloys(HEAs) of the FeMnCoCrNi family prepared by selective laser melting were systematically studied. Residual stresses were also analyzed by X-ray diffraction technique. Results show that the equiatomic FeMnCoCrNi HEAs with a relatively stable single-phase face-centered cubic(FCC) structure suffered from micro-cracking with residual tensile stress after laser melting. In contrast, the metastable non-equiatomic Fe MnCoCr HEAs with reduced stacking fault energy are free of micro-cracks with residual compressive stress at various volumetric energy densities(VEDs). The displacive transformation from the FCC matrix to the hexagonal close-packed(HCP) phase during cooling prevents the micro-cracking via consuming thermal stress related internal energy. Further, the displacive transformation during tensile deformation contributes to the higher strength and ductility of the metastable dual-phase HEA compared to that of the stable single-phase HEA. These findings provide useful guidance for the design of strong, ductile, and crack-free alloys for additive manufacturing by tuning phase stability.
基金Projects(51678071,51608183)supported by the National Natural Science Foundation of ChinaProjects(CX2018B530,CX2018B531)supported by the Postgraduate Research and Innovation-funded Project of Hunan Province,ChinaProjects(16BCX13,16BCX09)supported by Changsha University of Science and Technology,China
文摘In the light of the problem of weak reflection signals shielded by strong reflections from the concrete surface,the detection and the recognition of hidden micro-cracks in the shield tunnel lining were studied using the orthogonal matching pursuit and the Hilbert transform(OMHT method).First,according to the matching pursuit algorithm and the strong reflection-forming mechanism,and based on the sparse representation theory,a sparse dictionary,adapted to the characteristics of the strong reflection signal,was selected,and a matching decomposition of each signal was performed so that the weak target signal submerged in the strong reflection was displayed more strongly.Second,the Hilbert transform was used to extract multiple parameters,such as the instantaneous amplitude,the instantaneous frequency,and the instantaneous phase,from the processed signal,and the ground penetrating radar(GPR)image was comprehensively analyzed and determined from multiple angles.The results show that the OMHT method can accurately weaken the effect of the strong impedance interface and effectively enhance the weak reflected signal energy of hidden micro-crack in the shield tunnel segment.The resolution of the processed GPR image is greatly improved,and the reflected signal of the hidden micro-crack is easily visible,which proves the validity and accuracy of the analysis method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61571222,61602235,and 11474160)the Six Talent Peaks Project of Jiangsu Province,China
文摘We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates and composite laminates are established by ABAQUS software,where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage.The interactions between the S0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method.Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes,and sum and difference frequencies are extracted and simulated.Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes.There is a positive correlation among crack length,height,and sum and difference frequency amplitudes for an aluminum plate,with both amplitudes decreasing as crack thickness increased,i.e.,nonlinear effect weakens as the micro-crack becomes thicker.The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates.Furthermore,amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.
基金Supported by the Key Research and Development Plan of Anhui Province(Grant No.202004a05020003)Anhui Provincial Natural Science Foundation(Grant Nos.2008085QE233,2008085J24)+1 种基金the Science and Technology Major Project of Anhui Province(Grant No.201903a05020010)the Doctoral Science and Technology Foundation of Hefei General Machinery Research Institute(Grant No.2019010383).
文摘A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In this study,a back-surface micro-crack is considered as a research target.A roughness-modified ultrasonic testing model for micro-cracks is established based on a multi-Gaussian beam model and the principle of phase-screen approximation.The echo signals of micro-cracks and noises corresponding to different rough front surfaces and rough back surfaces are obtained based on a reference reflector signal acquired from a two-dimensional simulation model.Further compari-son between the analytical and numerical models shows that the responses of micro-cracks under the effects of dif-ferent corroded rough surfaces can be accurately predicted.The numerical and analytical results show that the echo signal amplitude of the micro-crack decreases significantly with an increase in roughness,whereas the noise ampli-tude slightly increases.Moreover,the effect of the rough front surface on the echo signal of the micro-crack is greater than that of the rough back surface.When the root-mean-square(RMS)height of the surface microtopography is less than 15μm,the two rough surfaces have less influence on the echo signals detected by a focused transducer with a frequency of 5 MHz and diameter of 6 mm.A method for predicting and evaluating the detection accuracy of micro-cracks under different rough surfaces is proposed by combining the theoretical model and a finite element simulation.Then,a series of rough surface samples containing different micro-cracks are fabricated to experimentally validate the evaluation method.
文摘Standards of highway conservation and maintenance are improved gradually following the improvement of requirements of road service. Before obvious damage such as obvious cracking (block,transverse, longitudinal ) and rutting emerge, inconspicuous distress (micro-cracks, polishing, pockmarked) is generated previously. These inconspicuous distresses may provide basis and criteria for pavement preventive maintenance. Currently most of preventive conservation measures are determined by experienced experts in maintenance and repair of road after site visits. Thus method is difficult in operation, and has a certain amount of instability as it is based on experience and personal knowledge. In this paper, camera and laser were used for automated high-speed acquisition images. Methods to preprocess pavement image are compared. The pretreatment method suitable for analyze micro-cracks picture is elected, an effective way to remove shadow is also proposed.
文摘In this work, we wish to demonstrate that a reaction path as the following, dislocations, deformations due to thermodynamic stress and, finally, micro-crack occurrence, can enhance the process of fusion of the deuterons introduced into the lattice by deuterium loading. In fact, calculating the rate of deuteron-plasmon-deuteron fusion within a micro-crack, showed, together with an enhancement of the tunneling effect, an increase of at least 2-3 orders of magnitude compared to the probability of fusion on the no deformed lattice. In fact, strong electric fields can take place in the micro-crack and the deuterons are accelerated to the energy which are enough for the D-D tunnelling. These phenomena open the way to the theoretical hypothesis that a kind of chain reaction, catalyzed by the micro-cracks produced in the structure as a result of deuterium loading, can favour the process of deuteron-plasmon fusion.
文摘This communication seeks to demonstrate that, at room temperature, the deformation of the crystalline lattice can influence the process of interaction of deuterons introduced within it. Calculations of this probability, in fact, showed an increase of at least 2-3 orders of magnitude with respect to the probability of fusion on the surface of the lattice. These phenomena open the way to the theoretical hypothesis of a kind of chain reaction, as a result of the deuterium loading and catalysed by micro-cracks formed in the structure by micro-explosions, can favour the process.
文摘The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental results indicate that the internal fatigue micro crack clearly evolves from the original penny shaped crack into a string of spherical voids in the longitudinal section plane of the fatigue sample after the vacuum diffusive healing at the high temperature. The quantitative relationship between the radius and the spacing of spherical voids depends on the crack position (within grains, on grain boundaries or transgranular sites) and its orientations within the grain. The diffusive healing, the related thermodynamics and mechanism, and the effect of the surface tension anisotropy on the relationship between void diameter and void spacing are also discussed.
基金supported by the National Natural Science Foundation of China(Nos.12272119 and U1965101).
文摘The initial micro-cracks affect the evolution characteristics of macroscopic deformation and failure of rock but are often ignored in theoretical calculation,numerical simulation,and mechanical experiments.In this study,we propose a quantitative analysis model to investigate the effects of initial micro-cracks on the evolution of marble deformation and failure.The relationship between the micro-crack propagation and the marble failure characteristics was comprehensively studied by combining theoretical analysis with a micro-computed tomography(micro-CT)scanning technique.We found that with the increase of confining pressure,the matrix elastic modulus of the marble first increased and then tended to be stable,while the micro-cracks increased exponentially.The sensitivity ranges of the marble sample matrix elastic modulus and micro-cracks to confining pressure were 0–30 MPa and 30–50 MPa,respectively.The porosity and Poisson’s ratio decreased exponentially.The increasing proportion of internal micro-cracks led to an increase in the sample non-uniformity.The samples presented mainly shear failure under triaxial compression,and the failure angle decreased linearly with the increase of confining pressure.The convergence direction of cracks decreased gradually.This quantitative analysis model could accurately portray the relationship between the overall macroscopic deformation and the deviatoric stress of the samples at the compaction and the linear elastic stages,thus deepening the understanding of the stress–strain behavior of rocks.
基金financially supported by the National Natural Science Foundation of China(Nos.42001053 and 42277147)the General Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202352363)the University Natural Science Foundation of Jiangsu Province(No.23KJD130001)。
文摘Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.
基金financial support from Taishan Scholars Program(Grant No.2019KJG002)National Natural Science Foundation of China(Grant Nos.42272329 and 52279116).
文摘The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault damage and has been much less investigated than the surface damage.The main contribution of this study is to compare the results of direct shear tests conducted on saw-cut planar joints and tension-induced rough granite joints under normal stresses ranging from 1 MPa to 50 MPa.The shear-induced off-fault damages are quantified and compared with the optical microscope observation.Our results clearly show that the planar joints slip stably under all the normal stresses except under 50 MPa,where some local fractures and regular stick-slip occur towards the end of the test.Both post-peak stress drop and stick-slip occur for all the rough joints.The residual shear strength envelopes for the rough joints and the peak shear strength envelope for the planar joints almost overlap.The root mean square(RMS)of asperity height for the rough joints decreases while it increases for the planar joint after shear,and a larger normal stress usually leads to a more significant decrease or increase in RMS.Besides,the extent of off-fault damage(or damage zone)increases with normal stress for both planar and rough joints,and it is restricted to a very thin layer with limited micro-cracks beneath the planar joint surface.In comparison,the thickness of the damage zone for the rough joints is about an order of magnitude larger than that of the planar joints,and the coalesced micro-cracks are generally inclined to the shear direction with acute angles.The findings obtained in this study contribute to a better understanding on the frictional behavior and damage characteristics of rock joints or fractures with different roughness.