本文介绍了一种基于2 bit阶梯波时间调制(step-wave time-modulation,SWTM)的高精度幅度调控方法。首先建立了2 bit SWTM理论模型,分析了阶梯波形对射频信号时间调制的幅度调控精度影响;然后设计了2 bit SWTM电路,进行了高精度幅度调控...本文介绍了一种基于2 bit阶梯波时间调制(step-wave time-modulation,SWTM)的高精度幅度调控方法。首先建立了2 bit SWTM理论模型,分析了阶梯波形对射频信号时间调制的幅度调控精度影响;然后设计了2 bit SWTM电路,进行了高精度幅度调控实验。测试结果表明,在40 MHz信号带宽下,该2 bit SWTM电路实现了0~31.75 dB衰减动态范围的7 bit幅度调控,误差范围小于±(0.1+0.8%AS)dB,均方根误差为0.07 dB。展开更多
逐次逼近寄存器模数转换器(SAR ADC)在逐次逼近的过程中,电容的切换会使参考电压上出现参考纹波噪声,该噪声会影响比较器的判定,进而输出错误的比较结果。针对该问题,基于CMOS 0.5μm工艺,设计了一种具有纹波消除技术的10 bit SAR ADC...逐次逼近寄存器模数转换器(SAR ADC)在逐次逼近的过程中,电容的切换会使参考电压上出现参考纹波噪声,该噪声会影响比较器的判定,进而输出错误的比较结果。针对该问题,基于CMOS 0.5μm工艺,设计了一种具有纹波消除技术的10 bit SAR ADC。通过增加纹波至比较器输入端的额外路径,将参考纹波满摆幅输入至比较器中;同时设计了消除数模转换器(DAC)模块,对参考纹波进行采样和输入,通过反转纹波噪声的极性,消除参考纹波对ADC输出的影响。该设计将信噪比(SNR)提高到56.75 dB,将有效位数(ENOB)提升到9.14 bit,将积分非线性(INL)从-1~5 LSB降低到-0.2~0.3 LSB,将微分非线性(DNL)从-3~4 LSB降低到-0.5~0.5 LSB。展开更多
In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cem...In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.展开更多
This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonom...This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonomous blasthole drilling.In this research in-situ vibration signals were analyzed in timefrequency domain and signals trend during tricone bit life span were investigated and introduced to support the development of artificial intelligence(AI)models.In addition to the signal statistical features,wavelet packet energy distribution proved to be a powerful indicator for bit wear assessment.Backpropagation artificial neural network(ANN)models were designed,trained and evaluated for bit state classification.Finally,an ANN architecture and feature vector were introduced to classify the bit condition and predict the bit failure.展开更多
In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mech...In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mechanical properties and microstructure of the diamond-matrix composite material of the Fe-based diamond drill bit were studied by using the method of uniform formula design,regression analysis and solution finding.An indoor drilling test was also carried out using the fabricated impregnated diamond drill bit.The results showed that after the addition of nano-NbC and nano-WC,the hardness and flexural strength of the matrix material got improved,as the flexural strength of the diamond composite material increased to 4.29%,the wear-resistance ratio increased to 8.75%,and the tighter the chemical bonding between the diamond and the matrix.This,indicates that the addition of nanoparticles has a positive significance in improving the performance of the diamond composite.The results of the drilling test showed that the mechanical drilling speed of the impregnated diamond drill bit after nanoparticle strengthening is 25.85%higher than that of the conventional drill bit,and the matrix wear was increased by 17.5%.It proves that nanoparticles can improve the drilling performance and efficiency of drill bit.展开更多
文摘本文介绍了一种基于2 bit阶梯波时间调制(step-wave time-modulation,SWTM)的高精度幅度调控方法。首先建立了2 bit SWTM理论模型,分析了阶梯波形对射频信号时间调制的幅度调控精度影响;然后设计了2 bit SWTM电路,进行了高精度幅度调控实验。测试结果表明,在40 MHz信号带宽下,该2 bit SWTM电路实现了0~31.75 dB衰减动态范围的7 bit幅度调控,误差范围小于±(0.1+0.8%AS)dB,均方根误差为0.07 dB。
文摘In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.
基金The authors appreciate generous supports from Canada Natural Sciences and Engineering Research Council,McGill University Engine Centre as well as Faculty of Engineering.
文摘This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonomous blasthole drilling.In this research in-situ vibration signals were analyzed in timefrequency domain and signals trend during tricone bit life span were investigated and introduced to support the development of artificial intelligence(AI)models.In addition to the signal statistical features,wavelet packet energy distribution proved to be a powerful indicator for bit wear assessment.Backpropagation artificial neural network(ANN)models were designed,trained and evaluated for bit state classification.Finally,an ANN architecture and feature vector were introduced to classify the bit condition and predict the bit failure.
基金National Center for International Research on Deep Earth Drilling and Resource Development,Faculty of Engineering,China University of Geosciences(Wuhan)(No.DEDRD-2022-08).
文摘In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mechanical properties and microstructure of the diamond-matrix composite material of the Fe-based diamond drill bit were studied by using the method of uniform formula design,regression analysis and solution finding.An indoor drilling test was also carried out using the fabricated impregnated diamond drill bit.The results showed that after the addition of nano-NbC and nano-WC,the hardness and flexural strength of the matrix material got improved,as the flexural strength of the diamond composite material increased to 4.29%,the wear-resistance ratio increased to 8.75%,and the tighter the chemical bonding between the diamond and the matrix.This,indicates that the addition of nanoparticles has a positive significance in improving the performance of the diamond composite.The results of the drilling test showed that the mechanical drilling speed of the impregnated diamond drill bit after nanoparticle strengthening is 25.85%higher than that of the conventional drill bit,and the matrix wear was increased by 17.5%.It proves that nanoparticles can improve the drilling performance and efficiency of drill bit.