A novel on-line north-seeking method based on a three-axis micro-electro-mechanical system(MEMS)gyroscope is designed.This system processes data by using a Kalman filter to calibrate the installation error of the thre...A novel on-line north-seeking method based on a three-axis micro-electro-mechanical system(MEMS)gyroscope is designed.This system processes data by using a Kalman filter to calibrate the installation error of the three-axis MEMS gyroscope in complex environment.The attitude angle updating for quaternion,based on which the attitude instrument will be rotated in real-time and the true north will be found.Our experimental platform constitutes the dual-axis electric rotary table and the attitude instrument,which is developed independently by our scientific research team.The experimental results show that the accuracy of north-seeking is higher than 1°,while the maximum root mean square error and the maximum mean absolute error are 0.906 7 and 0.910 0,respectively.The accuracy of north-seeking is much higher than the traditional method.展开更多
A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with ea...A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with each DOFof the system by vector analysis. The coupled differential equations thus established are solved analytically for their responses in both the time and frequency domains. Considering these frequency response equations, novel device design concepts are derived by forcing the sense phase to zero, which leads to a certain relationship between the structural frequencies, thereby causing minimization of the damping effect on the performance of the system. Furthermore, the feasibility of the present gyro-accelerometer structure is studied using a unique discriminatory scheme for the detection of both gyro action and linear acceleration at their events. This scheme combines the formulated settled transient solution of the gyro-accelerometer with the processes of synchronous demodulation and filtration, which leads to the in-phase and quadrature components of the system's output signal. These two components can be utilized in the detection of angular motion and linear acceleration. The obtained analytical results are validated by simulation in a MATLAB/Simulink environment, and it is found that the results are in excellent agreement with each other.展开更多
基金Supported by the Chongqing International Science and Technology Cooperation Base Project(cstc2014gjhz40001)the University Achievement Transformation Project of Chongqing Science and Technology Commission(KJZH17115)+3 种基金the Basic Research Project of Chongqing Science and Technology Commission(cstc2015jcyjBX0068,cstc2014jcyjA1350,cstc2015jcyjB0360)the Dr.Start-up Fund of Chongqing University of Posts and Telecommunications(A2015-40,A2016-76)the National Natural Science Foundation of Chongqing University of Posts and Telecommunications(A2015-49)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1704104,KJ1704091)
文摘A novel on-line north-seeking method based on a three-axis micro-electro-mechanical system(MEMS)gyroscope is designed.This system processes data by using a Kalman filter to calibrate the installation error of the three-axis MEMS gyroscope in complex environment.The attitude angle updating for quaternion,based on which the attitude instrument will be rotated in real-time and the true north will be found.Our experimental platform constitutes the dual-axis electric rotary table and the attitude instrument,which is developed independently by our scientific research team.The experimental results show that the accuracy of north-seeking is higher than 1°,while the maximum root mean square error and the maximum mean absolute error are 0.906 7 and 0.910 0,respectively.The accuracy of north-seeking is much higher than the traditional method.
文摘A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with each DOFof the system by vector analysis. The coupled differential equations thus established are solved analytically for their responses in both the time and frequency domains. Considering these frequency response equations, novel device design concepts are derived by forcing the sense phase to zero, which leads to a certain relationship between the structural frequencies, thereby causing minimization of the damping effect on the performance of the system. Furthermore, the feasibility of the present gyro-accelerometer structure is studied using a unique discriminatory scheme for the detection of both gyro action and linear acceleration at their events. This scheme combines the formulated settled transient solution of the gyro-accelerometer with the processes of synchronous demodulation and filtration, which leads to the in-phase and quadrature components of the system's output signal. These two components can be utilized in the detection of angular motion and linear acceleration. The obtained analytical results are validated by simulation in a MATLAB/Simulink environment, and it is found that the results are in excellent agreement with each other.