The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Thera...The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Therapy is highly relevant to the treatment of Parkinson’s disease through deep brain stimulation. Originally wearable and wireless systems for quantifying Parkinson’s disease involved the use a smartphone to quantify hand tremor. Although originally novel, the smartphone has notable issues as a wearable application for quantifying movement disorder tremor. The smartphone has evolved in a pathway that has made the smartphone progressively more cumbersome to mount about the dorsum of the hand. Furthermore, the smartphone utilizes an inertial sensor package that is not certified for medical analysis, and the trial data access a provisional Cloud computing environment through an email account. These concerns are resolved with the recent development of a conformal wearable and wireless inertial sensor system. This conformal wearable and wireless system mounts to the hand with the profile of a bandage by adhesive and accesses a secure Cloud computing environment through a segmented wireless connectivity strategy involving a smartphone and tablet. Additionally, the conformal wearable and wireless system is certified by the FDA of the United States of America for ascertaining medical grade inertial sensor data. These characteristics make the conformal wearable and wireless system uniquely suited for the quantification of Parkinson’s disease treatment through deep brain stimulation. Preliminary evaluation of the conformal wearable and wireless system is demonstrated through the differentiation of deep brain stimulation set to “On” and “Off” status. Based on the robustness of the acceleration signal, this signal was selected to quantify hand tremor for the prescribed deep brain stimulation settings. Machine learning classification using the Waikato Environment for Knowledge Analysis (WEKA) was applied using the multilayer perceptron neural network. The multilayer perceptron neural network achieved considerable classification accuracy for distinguishing between the deep brain stimulation system set to “On” and “Off” status through the quantified acceleration signal data obtained by this recently developed conformal wearable and wireless system. The research achievement establishes a progressive pathway to the future objective of achieving deep brain stimulation capabilities that promote closed-loop acquisition of configuration parameters that are uniquely optimized to the individual through extrinsic means of a highly conformal wearable and wireless inertial sensor system and machine learning with access to Cloud computing resources.展开更多
To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied sig...To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.展开更多
Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Impe...Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Imperative for the deep brain stimulation parameter optimization process is the quantification of response feedback. As a significant improvement to traditional ordinal scale techniques is the advent of wearable and wireless systems. Recently conformal wearable and wireless systems with a profile on the order of a bandage have been developed. Previous research endeavors have successfully differentiated between deep brain stimulation “On” and “Off” status through quantification using wearable and wireless inertial sensor systems. However, the opportunity exists to further evolve to an objectively quantified response to an assortment of parameter configurations, such as the variation of amplitude, for the deep brain stimulation system. Multiple deep brain stimulation amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of amplitude settings is acquired through a conformal wearable and wireless inertial sensor system and consolidated using Python software automation to a feature set amenable for machine learning. Five machine learning algorithms are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, logistic regression, and random forest. The performance of these machine learning algorithms is established based on the classification accuracy to distinguish between the deep brain stimulation amplitude settings and the time to develop the machine learning model. The support vector machine achieves the greatest classification accuracy, which is the primary performance parameter, and <span style="font-family:Verdana;">K-nearest neighbors achieves considerable classification accuracy with minimal time to develop the machine learning model.</span>展开更多
This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost so...This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost solid state INS/GPS/Magnetometer integrated navigation system has been developed that incorporates measurements from an Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer (Mag.) to provide a reliable complete navigation solution at a high output rate. The body attitude estimates, especially the heading angle, are fundamental challenges in a navigation system. Therefore targeting accurate attitude estimation is considered a significant contribution to the overall navigation error. A better estimation of the body attitude estimates leads to more accurate position and velocity estimation. For that end, the aim of this research is to exploit the magnetometer and accelerometer data in the attitude estimation technique. In this paper, a Scaled Unscented Kalman Filter (SUKF) based on the quaternion concept is designed for the INS/GPS/Mag integrated navigation system under large attitude error conditions. Simulation and experimental results indicate a satisfactory performance of the newly developed model.展开更多
A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3(α-Fe2O3)nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power ...A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3(α-Fe2O3)nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power microheater based on micro-electro-mechanical systems(MEMS) technology. The α-Fe2O3 nanorhombs, prepared via a solvothermal method, is characterized by transmission electron microscopy(TEM), Raman spectroscopy, x-ray diffraction(XRD), and x-ray photoelectron spectroscopy(XPS). The sensing performances of the α-Fe2O3 sensor to various toxic gases are investigated. The optimum sensing temperature is found to be about 280℃. The sensor shows excellent selectivity to ethanol.For various ethanol concentrations(1 ppm-20 ppm), the response and recovery times are around 3 s and 15 s at the working temperature of 280℃, respectively. Specifically, the α-Fe2O3 sensor exhibits a response shift less than 6% to ethanol at280℃ when the relative humidity(RH) increases from 30% to 70%. The good tolerance to humidity variation makes the sensor suitable for reliable applications in Internet of Things(IoT) in realistic environments. In addition, the sensor shows great long-term repeatability and stability towards ethanol. A possible gas sensing mechanism is proposed.展开更多
Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continu...Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continuous navigation solution with increased accuracy and reduced uncertainty or ambiguity. In this paper, we propose a novel approach of dynamically creating a Voronoi based Particle Filter (VPF) for integrating INS and GPS data. This filter is based on redistribution of the proposal distribution such that the redistributed particles lie in high likelihood region;thereby increasing the filter accuracy. The usual limitations like degeneracy, sample impoverishment that are seen in conventional particle filter are overcome using our VPF with minimum feasible particles. The small particle size in our methodology reduces the computational load of the filter and makes real-time implementation feasible. Our field test results clearly indicate that the proposed VPF algorithm effectively compensated and reduced positional inaccuracies when GPS data is available. We also present the preliminary results for cases with short GPS outages that occur for low-cost inertial sensors.展开更多
文摘The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Therapy is highly relevant to the treatment of Parkinson’s disease through deep brain stimulation. Originally wearable and wireless systems for quantifying Parkinson’s disease involved the use a smartphone to quantify hand tremor. Although originally novel, the smartphone has notable issues as a wearable application for quantifying movement disorder tremor. The smartphone has evolved in a pathway that has made the smartphone progressively more cumbersome to mount about the dorsum of the hand. Furthermore, the smartphone utilizes an inertial sensor package that is not certified for medical analysis, and the trial data access a provisional Cloud computing environment through an email account. These concerns are resolved with the recent development of a conformal wearable and wireless inertial sensor system. This conformal wearable and wireless system mounts to the hand with the profile of a bandage by adhesive and accesses a secure Cloud computing environment through a segmented wireless connectivity strategy involving a smartphone and tablet. Additionally, the conformal wearable and wireless system is certified by the FDA of the United States of America for ascertaining medical grade inertial sensor data. These characteristics make the conformal wearable and wireless system uniquely suited for the quantification of Parkinson’s disease treatment through deep brain stimulation. Preliminary evaluation of the conformal wearable and wireless system is demonstrated through the differentiation of deep brain stimulation set to “On” and “Off” status. Based on the robustness of the acceleration signal, this signal was selected to quantify hand tremor for the prescribed deep brain stimulation settings. Machine learning classification using the Waikato Environment for Knowledge Analysis (WEKA) was applied using the multilayer perceptron neural network. The multilayer perceptron neural network achieved considerable classification accuracy for distinguishing between the deep brain stimulation system set to “On” and “Off” status through the quantified acceleration signal data obtained by this recently developed conformal wearable and wireless system. The research achievement establishes a progressive pathway to the future objective of achieving deep brain stimulation capabilities that promote closed-loop acquisition of configuration parameters that are uniquely optimized to the individual through extrinsic means of a highly conformal wearable and wireless inertial sensor system and machine learning with access to Cloud computing resources.
基金Sponsored by the National Natural Science Foundation of China(60604011)
文摘To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.
文摘Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Imperative for the deep brain stimulation parameter optimization process is the quantification of response feedback. As a significant improvement to traditional ordinal scale techniques is the advent of wearable and wireless systems. Recently conformal wearable and wireless systems with a profile on the order of a bandage have been developed. Previous research endeavors have successfully differentiated between deep brain stimulation “On” and “Off” status through quantification using wearable and wireless inertial sensor systems. However, the opportunity exists to further evolve to an objectively quantified response to an assortment of parameter configurations, such as the variation of amplitude, for the deep brain stimulation system. Multiple deep brain stimulation amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of amplitude settings is acquired through a conformal wearable and wireless inertial sensor system and consolidated using Python software automation to a feature set amenable for machine learning. Five machine learning algorithms are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, logistic regression, and random forest. The performance of these machine learning algorithms is established based on the classification accuracy to distinguish between the deep brain stimulation amplitude settings and the time to develop the machine learning model. The support vector machine achieves the greatest classification accuracy, which is the primary performance parameter, and <span style="font-family:Verdana;">K-nearest neighbors achieves considerable classification accuracy with minimal time to develop the machine learning model.</span>
文摘This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost solid state INS/GPS/Magnetometer integrated navigation system has been developed that incorporates measurements from an Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer (Mag.) to provide a reliable complete navigation solution at a high output rate. The body attitude estimates, especially the heading angle, are fundamental challenges in a navigation system. Therefore targeting accurate attitude estimation is considered a significant contribution to the overall navigation error. A better estimation of the body attitude estimates leads to more accurate position and velocity estimation. For that end, the aim of this research is to exploit the magnetometer and accelerometer data in the attitude estimation technique. In this paper, a Scaled Unscented Kalman Filter (SUKF) based on the quaternion concept is designed for the INS/GPS/Mag integrated navigation system under large attitude error conditions. Simulation and experimental results indicate a satisfactory performance of the newly developed model.
基金Project supported by the Research Foundation of Hangzhou Dianzi University,China2011 Zhejiang Regional Collaborative Innovation Center for Smart City,China
文摘A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3(α-Fe2O3)nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power microheater based on micro-electro-mechanical systems(MEMS) technology. The α-Fe2O3 nanorhombs, prepared via a solvothermal method, is characterized by transmission electron microscopy(TEM), Raman spectroscopy, x-ray diffraction(XRD), and x-ray photoelectron spectroscopy(XPS). The sensing performances of the α-Fe2O3 sensor to various toxic gases are investigated. The optimum sensing temperature is found to be about 280℃. The sensor shows excellent selectivity to ethanol.For various ethanol concentrations(1 ppm-20 ppm), the response and recovery times are around 3 s and 15 s at the working temperature of 280℃, respectively. Specifically, the α-Fe2O3 sensor exhibits a response shift less than 6% to ethanol at280℃ when the relative humidity(RH) increases from 30% to 70%. The good tolerance to humidity variation makes the sensor suitable for reliable applications in Internet of Things(IoT) in realistic environments. In addition, the sensor shows great long-term repeatability and stability towards ethanol. A possible gas sensing mechanism is proposed.
文摘Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continuous navigation solution with increased accuracy and reduced uncertainty or ambiguity. In this paper, we propose a novel approach of dynamically creating a Voronoi based Particle Filter (VPF) for integrating INS and GPS data. This filter is based on redistribution of the proposal distribution such that the redistributed particles lie in high likelihood region;thereby increasing the filter accuracy. The usual limitations like degeneracy, sample impoverishment that are seen in conventional particle filter are overcome using our VPF with minimum feasible particles. The small particle size in our methodology reduces the computational load of the filter and makes real-time implementation feasible. Our field test results clearly indicate that the proposed VPF algorithm effectively compensated and reduced positional inaccuracies when GPS data is available. We also present the preliminary results for cases with short GPS outages that occur for low-cost inertial sensors.