In this paper,we studied the effects of physical factors,such as,acoustic pulses of laser-induced hydrodynamics(ALIH)and extremely-high frequencies(EHF)radiation,on the formation of heterotopic bone marrow organs.A su...In this paper,we studied the effects of physical factors,such as,acoustic pulses of laser-induced hydrodynamics(ALIH)and extremely-high frequencies(EHF)radiation,on the formation of heterotopic bone marrow organs.A suspension of precipitated bone marrow cells from CBA mice were exposed to ALIH pulses and EHF radiation separately and in their com bination tissue engineering constructs,presenting gelatin sponges 2 by 2 by 2 mm in size containing 10^(7)nucleated bone marrow cells,were exposed to physical factors and were implanted under the renal capsules of syngeneic mice.The newly formed hematopoietic organs were examined in three and five months later after treatment.The five months old transplants were bigger in size than the three months old transplants.The number of hematopoietic cells in the rest of the groups increased during this period by a factor from 3 to 10,the increase being as high as 20-fold in the:ALH+EHF group.Maximal concentration of multipotent stromal cells(MSCs)was in the EHF+ALIH,and minimal concentration was in the ALIH+EHF.The accumulation rate of bone capsule weight was highest for the transplants of EHF+ALIH and ALIH-sponge groups during the first three months.These data showed that the combined impact of the EHF+ALIH on MSCs is the most effective for the formation of bone marrow transplantation.展开更多
Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular me...Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element(CE/SE) method is employed to simulate the flow field of a PDE.The numerical results clearly demonstrate the external flow field of the PDE. The effect of an ellipsoidal reflector on the flow field characteristic near the PDE exit is investigated. The formation process of reflected shock wave and reflected jet shock are reported in detail. An acoustic measurement system is established for the PDE acoustic testing. The experimental results show that the ellipsoidal reflector changes the sound waveform and directivity of PDE sound. The reflected shock wave and reflected jet shock result in two more positive pressure peaks in the sound waveform. The ellipsoidal reflector changes the directivity of PDE sound from 20 to 0. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) each obtain an increment when the PDE is installed with a reflector. The maximum relative increase ratio of PSPL and OASPL are obtained at the focus point F2, whose values are 6.1% and 6.84% respectively. The results of the duration of the PDE sound indicate that the reflecting and focusing wave generated by the reflector result in the increment of A duration and B duration before and near focus point F2. Results show that the ellipsoidal reflector has a great influence on the acoustic characteristic of PDE sound. The research is helpful for understanding the influence of an ellipsoidal reflector on the formation and propagation process of PDE sound.展开更多
Acoustic characteristics of pulse detonation engine(PDE)sound propagating in enclosed space are numerically and experimentally investigated.The finite element software LS-DYNA is utilized to numerically simulate the P...Acoustic characteristics of pulse detonation engine(PDE)sound propagating in enclosed space are numerically and experimentally investigated.The finite element software LS-DYNA is utilized to numerically simulate the PDE sound propagating in enclosed space.Acoustic measurement systems are established for testing the PDE sound in enclosed space,and the time-frequency characteristics of PDE sound in enclosed space are reported in detail.The experimental results show that the sound waveform of PDE sound in enclosed space are quite different from those in open space,and the reflection and superposition of PDE sound on the walls of enclosed space results in the sound pressure oscillating obviously.It is found that the peak sound pressure level(PSPL)and overall sound pressure level(OASPL)of PDE sound in enclosed space are higher than those in open space and their difference increases with the rise of propagation distance.The results of the duration of PDE sound indicate that the A duration of PDE sound in enclosed space is higher than that in open space except at measuring points located at 2-m and 5-m while the B duration is higher at each of all measuring points.Results show that the enclosed space has a great influence on the acoustic characteristic of PDE sound.This research is helpful in performing PDE experiments in enclosed laboratories to prevent the PDE sound from affecting the safety of laboratory environment,equipment,and staffs.展开更多
Acoustic characteristics of the detonation sound wave generated by a pulse detonation engine with an annular nozzle,including peak sound pressure, directivity, and A duration, are experimentally investigated while uti...Acoustic characteristics of the detonation sound wave generated by a pulse detonation engine with an annular nozzle,including peak sound pressure, directivity, and A duration, are experimentally investigated while utilizing gasoline as fuel and oxygen-enriched air as oxidizer. Three annular nozzle geometries are evaluated by varying the ratio of inner cone diameter to detonation tube exit diameter from 0.36 to 0.68. The experimental results show that the annular nozzles have a significant effect on the acoustic characteristics of the detonation sound wave. The annular nozzles can amplify the peak sound pressure of the detonation sound wave at 90° while reducing it at 0° and 30°. The directivity angle of the detonation sound wave is changed by annular nozzles from 30° to 90°. The A duration of the detonation sound wave at 90° is also increased by the annular nozzles. These changes indicate that the annular nozzles have an important influence on the acoustic energy distribution of the detonation sound wave, which amplify the acoustic energy in a direction perpendicular to the tube axis and weaken it along the direction of the tube axis.展开更多
This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The...This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The spectra of pulse discharge plasma emission in the water and in the air-water mixture were obtained. The temperature of cuprum and oxygen atoms electronic excitation levels and the temperature tendencies during the discharge current existence were calculated.展开更多
Pulse pesition modulated (PPM) acoustic pulses are difficult to detect exacily in shallow sea channels because of strong multipath interference, large signal fluctuation and high noise level.This paper reports results...Pulse pesition modulated (PPM) acoustic pulses are difficult to detect exacily in shallow sea channels because of strong multipath interference, large signal fluctuation and high noise level.This paper reports results of analysis on the main characteristics of multipath interference and its adverse effects on detection of pulse position information. Feasible methods to overeome multipath interference are pointed out, and an efficient one is proposed to realize reliable and precise detection of PPM information.The results of this study are of reference value for other modes of signal detection.展开更多
In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoust...In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic emission sen- sor at a defined position is used to collect the acoustic wave signals that propagate in the air. The acoustic wave signal is sampled, stored, digitally filtered and analyzed by the online laser shock peening detection system. Then the system gets the acoustic wave signal energy to measure the quality of the laser shock peening by establishing the correspondence between the acoustic wave signal energy and the laser pulse energy. The surface residual stresses of the samples are measured by X-ray stress analysis instrument to verify the reliability. The results show that both the surface residual stress and acoustic wave signal energy are increased with the laser pulse energy, and their growth trends are consistent. Finally, the empirical formula between the surface residual stress and the acoustic wave signal energy is established by the cubic equation fitting, which will provide a theoretical basis for the real-time online detection of laser shock peening.展开更多
A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that...A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy , efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.展开更多
Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner d...Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner diameters and the other with the equal 1.5mm inner diameters, were separately used as the bubble pair injectors in the experiments. Consequently, four typical patterns of bubble plumes interaction could be observed in the two cases of needle pair matches. Through measuring the pressure pulses radiated by the bubble pairs immediately after their 'pinching-off ' and by making use of a sophisticated relation between oscillation frequency of volume mode and radius of gas bubble, the detachment size of the bubble plumes have been determined from the amplitude/frequency spectrum of the sound pressure pulses. The experimental results demonstrate that the acoustical method is valid in both of the interacting and non-interacting circumstances in bubble field and the bubble size measurements by this acoustical method agree well with the measurements from photographic analysis. Finally, a comparison has been made on the strong and weak points of the acoustical method with the other size determination methods.展开更多
文摘In this paper,we studied the effects of physical factors,such as,acoustic pulses of laser-induced hydrodynamics(ALIH)and extremely-high frequencies(EHF)radiation,on the formation of heterotopic bone marrow organs.A suspension of precipitated bone marrow cells from CBA mice were exposed to ALIH pulses and EHF radiation separately and in their com bination tissue engineering constructs,presenting gelatin sponges 2 by 2 by 2 mm in size containing 10^(7)nucleated bone marrow cells,were exposed to physical factors and were implanted under the renal capsules of syngeneic mice.The newly formed hematopoietic organs were examined in three and five months later after treatment.The five months old transplants were bigger in size than the three months old transplants.The number of hematopoietic cells in the rest of the groups increased during this period by a factor from 3 to 10,the increase being as high as 20-fold in the:ALH+EHF group.Maximal concentration of multipotent stromal cells(MSCs)was in the EHF+ALIH,and minimal concentration was in the ALIH+EHF.The accumulation rate of bone capsule weight was highest for the transplants of EHF+ALIH and ALIH-sponge groups during the first three months.These data showed that the combined impact of the EHF+ALIH on MSCs is the most effective for the formation of bone marrow transplantation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372141 and 11472138)the National Defense Pre-Research Foundation of China(Grant No.61426040201162604002)
文摘Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element(CE/SE) method is employed to simulate the flow field of a PDE.The numerical results clearly demonstrate the external flow field of the PDE. The effect of an ellipsoidal reflector on the flow field characteristic near the PDE exit is investigated. The formation process of reflected shock wave and reflected jet shock are reported in detail. An acoustic measurement system is established for the PDE acoustic testing. The experimental results show that the ellipsoidal reflector changes the sound waveform and directivity of PDE sound. The reflected shock wave and reflected jet shock result in two more positive pressure peaks in the sound waveform. The ellipsoidal reflector changes the directivity of PDE sound from 20 to 0. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) each obtain an increment when the PDE is installed with a reflector. The maximum relative increase ratio of PSPL and OASPL are obtained at the focus point F2, whose values are 6.1% and 6.84% respectively. The results of the duration of the PDE sound indicate that the reflecting and focusing wave generated by the reflector result in the increment of A duration and B duration before and near focus point F2. Results show that the ellipsoidal reflector has a great influence on the acoustic characteristic of PDE sound. The research is helpful for understanding the influence of an ellipsoidal reflector on the formation and propagation process of PDE sound.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372141 and 11472138)the Fundamental Research Funds for the Central Universities,China(Grant No.30919011258)the Young Scientists Fund of the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190439)
文摘Acoustic characteristics of pulse detonation engine(PDE)sound propagating in enclosed space are numerically and experimentally investigated.The finite element software LS-DYNA is utilized to numerically simulate the PDE sound propagating in enclosed space.Acoustic measurement systems are established for testing the PDE sound in enclosed space,and the time-frequency characteristics of PDE sound in enclosed space are reported in detail.The experimental results show that the sound waveform of PDE sound in enclosed space are quite different from those in open space,and the reflection and superposition of PDE sound on the walls of enclosed space results in the sound pressure oscillating obviously.It is found that the peak sound pressure level(PSPL)and overall sound pressure level(OASPL)of PDE sound in enclosed space are higher than those in open space and their difference increases with the rise of propagation distance.The results of the duration of PDE sound indicate that the A duration of PDE sound in enclosed space is higher than that in open space except at measuring points located at 2-m and 5-m while the B duration is higher at each of all measuring points.Results show that the enclosed space has a great influence on the acoustic characteristic of PDE sound.This research is helpful in performing PDE experiments in enclosed laboratories to prevent the PDE sound from affecting the safety of laboratory environment,equipment,and staffs.
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220919)the National Key Laboratory of Transient Physics Foundation Project, China (Grants No. 6142604210203)。
文摘Acoustic characteristics of the detonation sound wave generated by a pulse detonation engine with an annular nozzle,including peak sound pressure, directivity, and A duration, are experimentally investigated while utilizing gasoline as fuel and oxygen-enriched air as oxidizer. Three annular nozzle geometries are evaluated by varying the ratio of inner cone diameter to detonation tube exit diameter from 0.36 to 0.68. The experimental results show that the annular nozzles have a significant effect on the acoustic characteristics of the detonation sound wave. The annular nozzles can amplify the peak sound pressure of the detonation sound wave at 90° while reducing it at 0° and 30°. The directivity angle of the detonation sound wave is changed by annular nozzles from 30° to 90°. The A duration of the detonation sound wave at 90° is also increased by the annular nozzles. These changes indicate that the annular nozzles have an important influence on the acoustic energy distribution of the detonation sound wave, which amplify the acoustic energy in a direction perpendicular to the tube axis and weaken it along the direction of the tube axis.
文摘This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The spectra of pulse discharge plasma emission in the water and in the air-water mixture were obtained. The temperature of cuprum and oxygen atoms electronic excitation levels and the temperature tendencies during the discharge current existence were calculated.
文摘Pulse pesition modulated (PPM) acoustic pulses are difficult to detect exacily in shallow sea channels because of strong multipath interference, large signal fluctuation and high noise level.This paper reports results of analysis on the main characteristics of multipath interference and its adverse effects on detection of pulse position information. Feasible methods to overeome multipath interference are pointed out, and an efficient one is proposed to realize reliable and precise detection of PPM information.The results of this study are of reference value for other modes of signal detection.
基金This study was co-supported by National Natural Science Foundation of China (51501219), National Key Development Program of China (2016YFB 1192704), NSFC -Liaoning Province United Foundation (U 1608259) and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAFOBBO 1-01).
文摘In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic emission sen- sor at a defined position is used to collect the acoustic wave signals that propagate in the air. The acoustic wave signal is sampled, stored, digitally filtered and analyzed by the online laser shock peening detection system. Then the system gets the acoustic wave signal energy to measure the quality of the laser shock peening by establishing the correspondence between the acoustic wave signal energy and the laser pulse energy. The surface residual stresses of the samples are measured by X-ray stress analysis instrument to verify the reliability. The results show that both the surface residual stress and acoustic wave signal energy are increased with the laser pulse energy, and their growth trends are consistent. Finally, the empirical formula between the surface residual stress and the acoustic wave signal energy is established by the cubic equation fitting, which will provide a theoretical basis for the real-time online detection of laser shock peening.
基金supported by the National Key Research and Development Plan (No. 2016YFC0303901)National Natural Science Foundation of China (Nos. 41476080 and 51377145)the Natural Science Foundation of Zhejiang Province (No. LQ14D060004)
文摘A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy , efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.
基金Supported by the Post-Doctorate Science Foundation.
文摘Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner diameters and the other with the equal 1.5mm inner diameters, were separately used as the bubble pair injectors in the experiments. Consequently, four typical patterns of bubble plumes interaction could be observed in the two cases of needle pair matches. Through measuring the pressure pulses radiated by the bubble pairs immediately after their 'pinching-off ' and by making use of a sophisticated relation between oscillation frequency of volume mode and radius of gas bubble, the detachment size of the bubble plumes have been determined from the amplitude/frequency spectrum of the sound pressure pulses. The experimental results demonstrate that the acoustical method is valid in both of the interacting and non-interacting circumstances in bubble field and the bubble size measurements by this acoustical method agree well with the measurements from photographic analysis. Finally, a comparison has been made on the strong and weak points of the acoustical method with the other size determination methods.