The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound c...The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound combined method.The results show that the common measured strength curves tested by above two methods can not satisfy the required accuracy of LWAC strength test.In addition,specified compressive strength curves of testing LWAC by rebound method and ultrasonic-rebound combined method are obtained,respectively.展开更多
The characteristic of autogenous shrinkage(AS) and its effect on high strength lightweight aggregate concrete(HSLAC) were studied.The experimental results show that the main shrinkage of high strength concrete is ...The characteristic of autogenous shrinkage(AS) and its effect on high strength lightweight aggregate concrete(HSLAC) were studied.The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably,At the early stage the AS of HSLAC is lower than that of high strength normal concrete,but it has a large growth at the later stage.The AS of high strength normal concrete becomes stable at 90d age,but HSLAC still has a high AS growth .It is found that adjusting the volume rate of lightweight aggregate,mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC.展开更多
The influence of polymer addition on microstructure, performance and mechanical properties of lightweight aggregate concrete was investigated. It was found that the addition of polymer improved the performance and mec...The influence of polymer addition on microstructure, performance and mechanical properties of lightweight aggregate concrete was investigated. It was found that the addition of polymer improved the performance and mechanical properties of lightweight aggregate concrete. It was ascertained that the modification of microstructural uniformity and densification with the addition of polymer is responsible for the enhancement of mechanical properties. With respect to compressive strength and bending strength, the lightweight aggregate concrete added with 13% ethylene-acetate ethylene interpolymer (EVA) exhibits preferred mechanical properties. Key words lightweight aggregate concrete - polymer - microstructure - mechanical properties CLC number TU 528.2 Foundation item: Supported by the National Nature Science Foundation of China (50272045)Biography: Jiang Cong-sheng (1963-), male, Ph. D candidate, Associate professor, research direction: advanced architectural materials.展开更多
The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce ...The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce high-strength sintered lightweight aggregate,and then used the densified mixture design algorithm to create high-performance concrete from the sintered aggregate with only small amounts of mixing water and cement.Ultrasonic,electrical resistance and concrete strength efficiency tests were perfo...展开更多
The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship betw...The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship between the ceramsite type and the cracking resistance of LWAC was built up and compared with that of normal-weight coarse aggregate concrete(NWAC). A new method was proposed to evaluate the cracking resistance of concrete, where the concepts of cracking coefficient ζt(t) and the evaluation index Acr(t) were proposed, and the development of micro-cracks and damage accumulation were recognized. For the concrete with an ascending cracking coefficient curve, the larger Acr(t) is, the lower cracking resistance of concrete is. For the concrete with a descending cracking coefficient curve, the larger Acr(t) is, the stronger the cracking resistance of concrete is. The evaluation results show that in the case of that all the three types of coarse aggregates in concrete are pre-soaked for 24 h, NWAC has the lowest cracking resistance, followed by the LWAC with lower water absorption capacity ceramsite and the LWAC with higher water absorption capacity ceramsite has the strongest cracking resistance. The proposed method has obvious advantages over the cracking age method, because it can evaluate the cracking behavior of concrete even if the concrete has not an observable crack.展开更多
Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size...Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.展开更多
The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on th...The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.展开更多
This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC...This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.展开更多
This research indicates that the gradient of internal relative humidity (IRH) decreases rapidly within 7-day curing age in HPC. The amount of water imported by pre-wetted light-weight aggregate can regulate IRH of ...This research indicates that the gradient of internal relative humidity (IRH) decreases rapidly within 7-day curing age in HPC. The amount of water imported by pre-wetted light-weight aggregate can regulate IRH of concrete. By importing a proper amount of water, the process of the decline of IRH can be delayed and the autogenous shrinkage can be reduced. The relationship among the amount of water imported by pre- wetted lightweight aggregate, IRH and AS was established. The result provides a new method of reducing early AS and enhancing early cracking resistance of HPC.展开更多
With time concrete / reinforced concrete has become the popular material for construction. Modern industry utilizes this material a lot and has produced various beautiful, eye catching and amazing structures. Due to m...With time concrete / reinforced concrete has become the popular material for construction. Modern industry utilizes this material a lot and has produced various beautiful, eye catching and amazing structures. Due to modern requirements for living and developed construction industries, the old buildings (usually constructed with brick masonry) are demolished and are replaced with new modern buildings. Demolition of buildings results in waste materials which can create waste related problems and environmental issues. By using recycled aggregates weight of concrete can also be reduced, which can also solve problems related to self-weight of concrete. In this paper attempt has been made to use local used bricks from vicinity of Nawabshah, Pakistan, as coarse aggregate. Concrete cubes made with local recycled bricks are cast and tested for overall weight of concrete, moisture content, dynamic modulus of elasticity and compressive strength (nondestructive and destructive methods). The results showed that concrete derived from recycled aggregates attained lower strength than regular concrete. More detailed elaborated work is recommended with different mix ratios and different proportions recycled aggregates for better conclusions.展开更多
Due to the relatively high density of conventional non-sintered lightweight aggregate(NLA),a low-density core-shell NLA(CNLA) was developed.Moreover,two types of porous lightweight aggregate concrete (PLAC) for wallbo...Due to the relatively high density of conventional non-sintered lightweight aggregate(NLA),a low-density core-shell NLA(CNLA) was developed.Moreover,two types of porous lightweight aggregate concrete (PLAC) for wallboard were designed,using both foam and lightweight aggregates.The effects of LA on lightweight concrete workability,compressive strength,dry shrinkage,and thermal conductivity were studied and compared.The bulk density of CNLA can be lowered to 500 kg/m^(3),and its cylinder crushing strength is 1.6 MPa.PLACs also have compressive strengths ranging from 7.8 to 11.8 MPa,as well as thermal conductivity coefficients ranging from 0.193 to 0.219 W/(m·K^(-1)).The CNLA bonds better to the paste matrix at the interface transition zone,and CNLA concrete has a superior pore structure than SLA concrete,resulting in a 20% improvement in fluidity,a 10% increase in strength,a 6% reduction in heat conductivity,and an 11% decrease in drying shrinkage.展开更多
The main purpose of this research is to study the mechanical properties of lightweight concrete through the using of different types of lightweight aggregate. Three types of lightweight aggregate were used in this stu...The main purpose of this research is to study the mechanical properties of lightweight concrete through the using of different types of lightweight aggregate. Three types of lightweight aggregate were used in this study for the production of lightweight concrete. These types are red block aggregate, red ceramic aggregate and white thermostone aggregate. All these types have been brought from construction waste. A comparison of the properties of lightweight concrete with normal concrete is the most important goal of this study. The most important properties of concrete, which were compared with each other is compressive strength, static modulus of elasticity, splitting tensile strength and slump flow.展开更多
<span style="font-family:Verdana;">In this study, the possibility of using corn cobs as an organic aggregate in producing lightweight concrete ha</span><span style="font-family:Verdana;&q...<span style="font-family:Verdana;">In this study, the possibility of using corn cobs as an organic aggregate in producing lightweight concrete ha</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> been investigated. First, some important physical properties of corn cob have been determined in the laboratory. These properties are as follows: weight to volume ratio (unit weight), water absorption rate and granulometric analysis. Later on, 4 concrete mixtures have been prepared according to </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">workability of concrete and standar</span><span style="font-family:Verdana;">d</span><span style="font-family:;" "=""><span style="font-family:Verdana;">s specified in Turkey. After that, unit weight, heat transmissibility coefficient and 28-day pressure strength of these 4 concrete samples have been determined using machines measuring these properties. The 28-day pressure endurance value has been found between 1.4 - 56.25 kgf/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">,</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">heat transmissibility coefficient ha</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> been found between 0.19 - 0.35 Kcal/m<span style="white-space:nowrap;">∙</span></span><span style="font-family:Verdana;">h<span style="white-space:nowrap;">∙</span><span style="white-space:nowrap;">˚</span>C and unit weight of samples have been found between 800 - 1520 kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. Lastly</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> these properties of concrete samples have been compared with other lightweight materials being used in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">construction of buildings.</span>展开更多
In recent decades,the utilization of waste tires,plastic and artificial shale ceramsite as alternative fine aggregate to make self-compacting concrete(SCC)has been recognized as an eco-friendly and sustainable method ...In recent decades,the utilization of waste tires,plastic and artificial shale ceramsite as alternative fine aggregate to make self-compacting concrete(SCC)has been recognized as an eco-friendly and sustainable method to manufacture renewable construction materials.In this study,three kinds of recycled aggregates:recycled tire rubber particles,wood-plastic particles,artificial shale ceramsite were used to replace the sand by different volume(5%,10%,20%and 30%),and their effects on the fresh and hardened properties of SCC were investigated.The slump flow and V-funnel tests were conducted to evaluate the fresh properties of modified-SCC mixtures.The hardened properties include 3,7 and 28-day compressive strengths,axial compressive strength,static elastic modulus,and compressive stress-strain behavior at 28 days.The test results showed that the incorporation of these three kinds of alternative aggregates had a negative impact on the fresh properties of SCC.Besides,the 28-day compressive strength and axial compressive strength decreased with the increase of rubber and wood-plastic particles content.In this experiment,all the three kinds of recycled aggregates can improve the ductility and deformability of SCC,and the most excellent performance comes from SCC with recycled rubber particles.展开更多
Sirnak City and the surrounding areas are on steeper slopes. There are sliding large land masses or rocks. Underground water and harsh climatic conditions contain high risk hazard areas in urban living site with highe...Sirnak City and the surrounding areas are on steeper slopes. There are sliding large land masses or rocks. Underground water and harsh climatic conditions contain high risk hazard areas in urban living site with higher population density. In order to eliminate landslides and related events, significant precautions should be taken. The mapping of landslide risk may ease to take precautions. Even the application of landfill rock may reduce water content of soil. In this research, fly ash and Mine Waste shale stone were used with low density foam concrete. Waste mixture at certain proportions decreased cement use. Shale stone as fine aggregate instead of fly ash in specific proportions improved mechanical strength and porosity. Hence landslide hazardous area could be safer for urban living.展开更多
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
文摘The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound combined method.The results show that the common measured strength curves tested by above two methods can not satisfy the required accuracy of LWAC strength test.In addition,specified compressive strength curves of testing LWAC by rebound method and ultrasonic-rebound combined method are obtained,respectively.
文摘The characteristic of autogenous shrinkage(AS) and its effect on high strength lightweight aggregate concrete(HSLAC) were studied.The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably,At the early stage the AS of HSLAC is lower than that of high strength normal concrete,but it has a large growth at the later stage.The AS of high strength normal concrete becomes stable at 90d age,but HSLAC still has a high AS growth .It is found that adjusting the volume rate of lightweight aggregate,mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC.
文摘The influence of polymer addition on microstructure, performance and mechanical properties of lightweight aggregate concrete was investigated. It was found that the addition of polymer improved the performance and mechanical properties of lightweight aggregate concrete. It was ascertained that the modification of microstructural uniformity and densification with the addition of polymer is responsible for the enhancement of mechanical properties. With respect to compressive strength and bending strength, the lightweight aggregate concrete added with 13% ethylene-acetate ethylene interpolymer (EVA) exhibits preferred mechanical properties. Key words lightweight aggregate concrete - polymer - microstructure - mechanical properties CLC number TU 528.2 Foundation item: Supported by the National Nature Science Foundation of China (50272045)Biography: Jiang Cong-sheng (1963-), male, Ph. D candidate, Associate professor, research direction: advanced architectural materials.
文摘The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce high-strength sintered lightweight aggregate,and then used the densified mixture design algorithm to create high-performance concrete from the sintered aggregate with only small amounts of mixing water and cement.Ultrasonic,electrical resistance and concrete strength efficiency tests were perfo...
基金Project(51078090)supported by the National Natural Science Foundation of China
文摘The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship between the ceramsite type and the cracking resistance of LWAC was built up and compared with that of normal-weight coarse aggregate concrete(NWAC). A new method was proposed to evaluate the cracking resistance of concrete, where the concepts of cracking coefficient ζt(t) and the evaluation index Acr(t) were proposed, and the development of micro-cracks and damage accumulation were recognized. For the concrete with an ascending cracking coefficient curve, the larger Acr(t) is, the lower cracking resistance of concrete is. For the concrete with a descending cracking coefficient curve, the larger Acr(t) is, the stronger the cracking resistance of concrete is. The evaluation results show that in the case of that all the three types of coarse aggregates in concrete are pre-soaked for 24 h, NWAC has the lowest cracking resistance, followed by the LWAC with lower water absorption capacity ceramsite and the LWAC with higher water absorption capacity ceramsite has the strongest cracking resistance. The proposed method has obvious advantages over the cracking age method, because it can evaluate the cracking behavior of concrete even if the concrete has not an observable crack.
基金Project(2009CB623201) supported by the National Basic Research Program of ChinaProject(G0510) supported by the Key Laboratory for Refractories and High-temperature Ceramics of Hubei Province, China
文摘Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.
文摘The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.
基金Funded by the National Natural Science Foundation of China (Nos.U21A20149, 51878003, 51908378)Research Reserve of Anhui Jianzhu University (No.2022XMK01)Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No. 2022AH010017)。
文摘This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.
文摘This research indicates that the gradient of internal relative humidity (IRH) decreases rapidly within 7-day curing age in HPC. The amount of water imported by pre-wetted light-weight aggregate can regulate IRH of concrete. By importing a proper amount of water, the process of the decline of IRH can be delayed and the autogenous shrinkage can be reduced. The relationship among the amount of water imported by pre- wetted lightweight aggregate, IRH and AS was established. The result provides a new method of reducing early AS and enhancing early cracking resistance of HPC.
文摘With time concrete / reinforced concrete has become the popular material for construction. Modern industry utilizes this material a lot and has produced various beautiful, eye catching and amazing structures. Due to modern requirements for living and developed construction industries, the old buildings (usually constructed with brick masonry) are demolished and are replaced with new modern buildings. Demolition of buildings results in waste materials which can create waste related problems and environmental issues. By using recycled aggregates weight of concrete can also be reduced, which can also solve problems related to self-weight of concrete. In this paper attempt has been made to use local used bricks from vicinity of Nawabshah, Pakistan, as coarse aggregate. Concrete cubes made with local recycled bricks are cast and tested for overall weight of concrete, moisture content, dynamic modulus of elasticity and compressive strength (nondestructive and destructive methods). The results showed that concrete derived from recycled aggregates attained lower strength than regular concrete. More detailed elaborated work is recommended with different mix ratios and different proportions recycled aggregates for better conclusions.
基金Funded by the National Key R&D Programs of China (Nos. 2016YFC0701907, 2021YFB3802000 and 2021YFB3802004)。
文摘Due to the relatively high density of conventional non-sintered lightweight aggregate(NLA),a low-density core-shell NLA(CNLA) was developed.Moreover,two types of porous lightweight aggregate concrete (PLAC) for wallboard were designed,using both foam and lightweight aggregates.The effects of LA on lightweight concrete workability,compressive strength,dry shrinkage,and thermal conductivity were studied and compared.The bulk density of CNLA can be lowered to 500 kg/m^(3),and its cylinder crushing strength is 1.6 MPa.PLACs also have compressive strengths ranging from 7.8 to 11.8 MPa,as well as thermal conductivity coefficients ranging from 0.193 to 0.219 W/(m·K^(-1)).The CNLA bonds better to the paste matrix at the interface transition zone,and CNLA concrete has a superior pore structure than SLA concrete,resulting in a 20% improvement in fluidity,a 10% increase in strength,a 6% reduction in heat conductivity,and an 11% decrease in drying shrinkage.
文摘The main purpose of this research is to study the mechanical properties of lightweight concrete through the using of different types of lightweight aggregate. Three types of lightweight aggregate were used in this study for the production of lightweight concrete. These types are red block aggregate, red ceramic aggregate and white thermostone aggregate. All these types have been brought from construction waste. A comparison of the properties of lightweight concrete with normal concrete is the most important goal of this study. The most important properties of concrete, which were compared with each other is compressive strength, static modulus of elasticity, splitting tensile strength and slump flow.
文摘<span style="font-family:Verdana;">In this study, the possibility of using corn cobs as an organic aggregate in producing lightweight concrete ha</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> been investigated. First, some important physical properties of corn cob have been determined in the laboratory. These properties are as follows: weight to volume ratio (unit weight), water absorption rate and granulometric analysis. Later on, 4 concrete mixtures have been prepared according to </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">workability of concrete and standar</span><span style="font-family:Verdana;">d</span><span style="font-family:;" "=""><span style="font-family:Verdana;">s specified in Turkey. After that, unit weight, heat transmissibility coefficient and 28-day pressure strength of these 4 concrete samples have been determined using machines measuring these properties. The 28-day pressure endurance value has been found between 1.4 - 56.25 kgf/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">,</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">heat transmissibility coefficient ha</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> been found between 0.19 - 0.35 Kcal/m<span style="white-space:nowrap;">∙</span></span><span style="font-family:Verdana;">h<span style="white-space:nowrap;">∙</span><span style="white-space:nowrap;">˚</span>C and unit weight of samples have been found between 800 - 1520 kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. Lastly</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> these properties of concrete samples have been compared with other lightweight materials being used in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">construction of buildings.</span>
基金the financial support from the National Natural Science Foundation of China,grant number 11772351Double Shield TBM Material Optimization and Supporting Technology Research-TBM Segment Rapid Support Scientific Research Project[contract NO:PM2017/D02]the National Key R&D Program of China(No.2018YFC0406604).
文摘In recent decades,the utilization of waste tires,plastic and artificial shale ceramsite as alternative fine aggregate to make self-compacting concrete(SCC)has been recognized as an eco-friendly and sustainable method to manufacture renewable construction materials.In this study,three kinds of recycled aggregates:recycled tire rubber particles,wood-plastic particles,artificial shale ceramsite were used to replace the sand by different volume(5%,10%,20%and 30%),and their effects on the fresh and hardened properties of SCC were investigated.The slump flow and V-funnel tests were conducted to evaluate the fresh properties of modified-SCC mixtures.The hardened properties include 3,7 and 28-day compressive strengths,axial compressive strength,static elastic modulus,and compressive stress-strain behavior at 28 days.The test results showed that the incorporation of these three kinds of alternative aggregates had a negative impact on the fresh properties of SCC.Besides,the 28-day compressive strength and axial compressive strength decreased with the increase of rubber and wood-plastic particles content.In this experiment,all the three kinds of recycled aggregates can improve the ductility and deformability of SCC,and the most excellent performance comes from SCC with recycled rubber particles.
文摘Sirnak City and the surrounding areas are on steeper slopes. There are sliding large land masses or rocks. Underground water and harsh climatic conditions contain high risk hazard areas in urban living site with higher population density. In order to eliminate landslides and related events, significant precautions should be taken. The mapping of landslide risk may ease to take precautions. Even the application of landfill rock may reduce water content of soil. In this research, fly ash and Mine Waste shale stone were used with low density foam concrete. Waste mixture at certain proportions decreased cement use. Shale stone as fine aggregate instead of fly ash in specific proportions improved mechanical strength and porosity. Hence landslide hazardous area could be safer for urban living.