为了降低直流微网系统中负载变化或者多源出力变化引起的功率波动,提出一种同时考虑蓄电池和超级电容荷电状态(state of charge,SOC)的混合储能协调控制策略。首先,分析直流微网系统协调控制原理,在此基础上,通过低通滤波器对所需平抑...为了降低直流微网系统中负载变化或者多源出力变化引起的功率波动,提出一种同时考虑蓄电池和超级电容荷电状态(state of charge,SOC)的混合储能协调控制策略。首先,分析直流微网系统协调控制原理,在此基础上,通过低通滤波器对所需平抑功率进行分频,低频功率由蓄电池承担,高频功率及系统开关的高频纹波由超级电容承担,根据频率响应确定了滤波器的时间常数调整原则;然后,将超级电容和蓄电池各自的SOC实时状态作为反馈观测量,根据两者的SOC状态并结合实际功率需求,将系统划分成11个工作模式,分析了不同工作模式下的功率需求,依据不同工作模式下的功率需求进行功率调整,进而实现功率二次分配;最后,将所提策略在4种典型情况下进行仿真验证,实验结果验证了该策略的有效性。展开更多
文摘为了降低直流微网系统中负载变化或者多源出力变化引起的功率波动,提出一种同时考虑蓄电池和超级电容荷电状态(state of charge,SOC)的混合储能协调控制策略。首先,分析直流微网系统协调控制原理,在此基础上,通过低通滤波器对所需平抑功率进行分频,低频功率由蓄电池承担,高频功率及系统开关的高频纹波由超级电容承担,根据频率响应确定了滤波器的时间常数调整原则;然后,将超级电容和蓄电池各自的SOC实时状态作为反馈观测量,根据两者的SOC状态并结合实际功率需求,将系统划分成11个工作模式,分析了不同工作模式下的功率需求,依据不同工作模式下的功率需求进行功率调整,进而实现功率二次分配;最后,将所提策略在4种典型情况下进行仿真验证,实验结果验证了该策略的有效性。