Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
Jinlongshan gold orebelt, a newly discovered one in sedimentary rock region in southern Qinling Mountains, is mainly located in upper Devonian and lower Carboniferous calcareous siltstone and argillic silty limestone ...Jinlongshan gold orebelt, a newly discovered one in sedimentary rock region in southern Qinling Mountains, is mainly located in upper Devonian and lower Carboniferous calcareous siltstone and argillic silty limestone of later Paleozoic era. Typical disseminated gold mineralization occurred in calcareous siltstone, which is major host rock and mainly composed of silt (SiO2 mostly varies from 38% to 73%) and calcite (CaO mostly varies from 10% to 25%). Pyrite created by living beings in Nanyangshan formation may be poor in gold. Faults and favorable layers jointly control disseminated gold mineralization. The significance of this opinion is very great for gold exploration.展开更多
In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scannin...In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.展开更多
The mineralogical characteristics of tantalumniobium ores from Songzi were investigated using mineral liberation analyzer (MLA) and chemical analysis. In particular, the chemical composition, phase composition, part...The mineralogical characteristics of tantalumniobium ores from Songzi were investigated using mineral liberation analyzer (MLA) and chemical analysis. In particular, the chemical composition, phase composition, particle size, and dissemination characteristics of the ores were studied in detail. Results show that Ta2O5 and Nb2O5 have grades of 0.013 % and 0.011%, respectively. The main valuable minerals in the ores are tantalite, col- umbite, tantalum-niobite, and microlite, and the gangue minerals associated with tantalum-niobium minerals mainly include quartz, kaolinite, illite, feldspar, and mica among others. The minerals are embedded in a complex manner. Tantalum-niobium minerals with most particle sizes of -0.040 mm are disseminated in minerals, such as mica, illite, quartz, and partially intergrown with topaz and zircon, where they could not be easily liberated. Thus, the ores are classified as low-grade, micro-fine, and refractory tantalum-niobium ores. Based on this consideration, the process of classification-gravity concentration-magnetic separation-middlings regrinding and gravity concentration are finally determined and satisfactory indices are obtained. Two rough concentrates are produced: Concentrate I has Ta2O5 and Nb2O5 grades of 7.0292 % and 3.546 %, respectively, as well as recovery of 49.42 % and 35.46 %. By comparison, Concentrate Ⅱ has Ta2O5 and Nb2O5 grades of 7.0292 % and 3.546 %, respectively, as well as recovery of 49.42 % and 35.46 %.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
文摘Jinlongshan gold orebelt, a newly discovered one in sedimentary rock region in southern Qinling Mountains, is mainly located in upper Devonian and lower Carboniferous calcareous siltstone and argillic silty limestone of later Paleozoic era. Typical disseminated gold mineralization occurred in calcareous siltstone, which is major host rock and mainly composed of silt (SiO2 mostly varies from 38% to 73%) and calcite (CaO mostly varies from 10% to 25%). Pyrite created by living beings in Nanyangshan formation may be poor in gold. Faults and favorable layers jointly control disseminated gold mineralization. The significance of this opinion is very great for gold exploration.
基金Projects 2008BAB31B01 supported by the National Key Technology R&D Program in the 11th Five-Year Plan of China50834006 by the National Natural Science Foundation of China
文摘In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.
基金financially supported by the National Science Foundation of China(No.51104034)the Fundamental Research Funds for the Central Universities(No.N130601003)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘The mineralogical characteristics of tantalumniobium ores from Songzi were investigated using mineral liberation analyzer (MLA) and chemical analysis. In particular, the chemical composition, phase composition, particle size, and dissemination characteristics of the ores were studied in detail. Results show that Ta2O5 and Nb2O5 have grades of 0.013 % and 0.011%, respectively. The main valuable minerals in the ores are tantalite, col- umbite, tantalum-niobite, and microlite, and the gangue minerals associated with tantalum-niobium minerals mainly include quartz, kaolinite, illite, feldspar, and mica among others. The minerals are embedded in a complex manner. Tantalum-niobium minerals with most particle sizes of -0.040 mm are disseminated in minerals, such as mica, illite, quartz, and partially intergrown with topaz and zircon, where they could not be easily liberated. Thus, the ores are classified as low-grade, micro-fine, and refractory tantalum-niobium ores. Based on this consideration, the process of classification-gravity concentration-magnetic separation-middlings regrinding and gravity concentration are finally determined and satisfactory indices are obtained. Two rough concentrates are produced: Concentrate I has Ta2O5 and Nb2O5 grades of 7.0292 % and 3.546 %, respectively, as well as recovery of 49.42 % and 35.46 %. By comparison, Concentrate Ⅱ has Ta2O5 and Nb2O5 grades of 7.0292 % and 3.546 %, respectively, as well as recovery of 49.42 % and 35.46 %.