期刊文献+
共找到87,314篇文章
< 1 2 250 >
每页显示 20 50 100
无界域上具有记忆的非自治Plate方程随机吸引子的存在性
1
作者 蒲武军 姚晓斌 《西北师范大学学报(自然科学版)》 CAS 2024年第3期115-126,共12页
研究无界域上一类具有衰退记忆和加性噪声的非自治Plate方程解的长时间行为.利用一致估计验证了解的拉回渐近紧性,获得了其随机吸引子的存在性.
关键词 随机吸引子 非自治plate方程 衰退记忆 加性噪声
下载PDF
A Dynamic Coupling of Ocean and Plate Motion
2
作者 Yongfeng Yang 《International Journal of Geosciences》 CAS 2024年第9期737-763,共27页
Plate motion representing a remarkable Earth process is widely attributed to several primary forces such as ridge push and slab pull. Recently, we have presented that the ocean water pressure against the wall of conti... Plate motion representing a remarkable Earth process is widely attributed to several primary forces such as ridge push and slab pull. Recently, we have presented that the ocean water pressure against the wall of continents may generate enormous force on continents. Continents are physically fixed on the top of the lithosphere that has been already broken into individual plates, this attachment enables the force to be laterally transferred to the lithospheric plates. In this study, we combine the force and the existing plate driving forces (i.e., ridge push, slab pull, collisional, and shearing) to account for plate motion. We show that the modelled movements for the South American, African, North American, Eurasian, Australian, Pacific plates are well agreement with the observed movements in both speed and azimuth, with a Root Mean Square Error (RMSE) of the modelled speed against the observed speed of 0.91, 3.76, 2.77, 2.31, 7.43, and 1.95 mm/yr, respectively. 展开更多
关键词 Ocean Water Pressure Force Ocean-Continent Interaction plate Driving Force Lithospheric plate plate Motion
下载PDF
Generative optimization of bistable plates with deep learning
3
作者 Hong Li Qingfeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期35-38,共4页
Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices.Most bistable curved plates are characterized by a constant thickness profile.Regrettably,due to the in... Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices.Most bistable curved plates are characterized by a constant thickness profile.Regrettably,due to the inherent complexity of this problem,relatively little attention has been devoted to this area.In this study,we demonstrate how deep learning can facilitate the discovery of novel plate profiles that cater to multiple objectives,including maximizing stiffness,forward snapping force,and backward snapping force.Our proposed approach is distinguished by its efficiency in terms of low computational energy consumption and high effectiveness.It holds promise for future applications in the design and optimization of multistable structures with diverse objectives,addressing the requirements of various fields. 展开更多
关键词 Bistable plate Nonlinear MICROSTRUCTURE Simulation Machine learning
下载PDF
Imaging plate scanners calibration and the attenuation behavior of imaging plate signals
4
作者 薄楠 王乃彦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期38-44,共7页
Based on previously reported work, we propose a new method for calibrating image plate(IP) scanners, offering greater flexibility and convenience, which can be extended to the calibration tasks of various scanner mode... Based on previously reported work, we propose a new method for calibrating image plate(IP) scanners, offering greater flexibility and convenience, which can be extended to the calibration tasks of various scanner models. This method was applied to calibrate the sensitivity of a GE Typhoon FLA 7000 scanner. Additionally, we performed a calibration of the spontaneous signal attenuation behavior for BAS-MS, BAS-SR, and BAS-TR type IPs under the 20±1℃ environmental conditions, and observed significant signal carrier diffusion behavior in BAS-MS IP. The calibration results lay a foundation for further research on the interaction between ultra-short, ultra-intense lasers and matter. 展开更多
关键词 image plate SCANNER ultra-short ultra-intense lasers
下载PDF
A theory for three-dimensional response of micropolar plates
5
作者 Dianwu HUANG Linghui HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1403-1414,共12页
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu... Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail. 展开更多
关键词 micropolar plate TRANSFER-MATRIX asymptotic expansion three-dimensional response
下载PDF
Modeling Geometrically Nonlinear FG Plates: A Fast and Accurate Alternative to IGA Method Based on Deep Learning
6
作者 Se Li Tiantang Yu Tinh Quoc Bui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2793-2808,共16页
Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functiona... Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functionalgrading (FG). However, the procedure is usually complex and often is time-consuming. We thus put forward adeep learning method to model the geometrically nonlinear bending behavior of FG plates, bypassing the complexIGA simulation process. A long bidirectional short-term memory (BLSTM) recurrent neural network is trainedusing the load and gradient index as inputs and the displacement responses as outputs. The nonlinear relationshipbetween the outputs and the inputs is constructed usingmachine learning so that the displacements can be directlyestimated by the deep learning network. To provide enough training data, we use S-FSDT Von-Karman IGA andobtain the displacement responses for different loads and gradient indexes. Results show that the recognition erroris low, and demonstrate the feasibility of deep learning technique as a fast and accurate alternative to IGA formodeling the geometrically nonlinear bending behavior of FG plates. 展开更多
关键词 FG plates geometric nonlinearity deep learning BLSTM IGA S-FSDT
下载PDF
Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates
7
作者 臧华平 王宝珍 +7 位作者 郑程龙 魏来 范全平 王少义 杨祖华 周维民 曹磊峰 郭海中 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期441-448,共8页
Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci,which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we pr... Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci,which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we propose an efficient methodology to combine the merit of elliptical reflective zone plates(ERZPs) and the advantage of spiral zone plates(SZPs) in establishing a specific single optical element, termed elliptical reflective annulus quadrangle-element coded spiral zone plates(ERAQSZPs) to generate single-focus phase singularity. Differing from the abrupt reflectance of the ERZPs, a series of randomly distributed nanometer apertures are adopted to realize the sinusoidal reflectance. Typically, according to our physical design, the ERAQSZPs are fabricated on a bulk substrate;therefore, the new idea can significantly reduce the difficulty in the fabrication process. Based on the Kirchhoff diffraction theory and convolution theorem, the focusing performance of ERAQSZPs is calculated. The results reveal that apart from the capability of generating optical vortices,ERAQSZPs can also integrate the function of focusing, energy selection, higher-order foci elimination, as well as high spectral resolution together. In addition, the focusing properties can be further improved by appropriately adjusting the parameters, such as zone number and the size of the consisted primitives. These findings are expected to direct a new direction toward improving the performance of optical capture, x-ray fluorescence spectra, and forbidden transition. 展开更多
关键词 optical vortex single-focus spiral zone plate topological charges
下载PDF
The interaction between a shaped charge jet and a single moving plate
8
作者 Andreas Helte Jonas Lundgren Jonas Candle 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of... Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observation.The difference is attributed to the character of the contact pressure in the interaction region.For a backward moving plate,the maximum contact pressure is obtained at the beginning of the interaction zone and the contact pressure is therefore higher upstream than downstream of the jet while the opposite is true for a forward moving plate.A negative interface pressure gradient with respect to the jet motion results in a more stable flow than a positive,which means that the jet-plate contact is more stable for a backward moving plate than for a forward moving plate.A forward moving plate is thus more effective in disturbing the jet than a backward moving plate,not only because of the higher jet to plate mass flux ratio but also because of the character of the contact with the jet. 展开更多
关键词 Reactive armour Flyer plate Shaped charge jet
下载PDF
A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures
9
作者 Wei WEI Feng GUAN Xin FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1171-1188,共18页
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ... A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency. 展开更多
关键词 metamaterial and metastructure vibration isolation bandgap wave insulation plate
下载PDF
Unsteady MHD Casson Nanofluid Flow Past an Exponentially Accelerated Vertical Plate:An Analytical Strategy
10
作者 T.Aghalya R.Tamizharasi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期431-460,共30页
In this study,the characteristics of heat transfer on an unsteady magnetohydrodynamic(MHD)Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated.The flow was d... In this study,the characteristics of heat transfer on an unsteady magnetohydrodynamic(MHD)Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated.The flow was driven by the combined effects of the magnetic field,heat radiation,heat source/sink and chemical reaction.Copper oxide(CuO)and titanium oxide(TiO2)are acknowledged as nanoparticle materials.The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions.Graphical representations are provided to analyze how changes in physical parameters,such as the magnetic field,heat radiation,heat source/sink and chemical reaction,affect the velocity,temperature and concentration profiles.The computed values of skin friction,heat and mass transfer rates at the surface were tabulated for various sets of input parameters.It is perceived that there is a drop in temperature due to the rise in the heat source/sink and the Prandtl number.It should be noted that a boost in the thermal radiation parameter prompts an increase in temperature.An increase in the Prandtl number,heat source/sink parameter,time and a decrease in the thermal radiation parameter result in an increase in theNusselt number.The computed values of the skin friction,heat andmass transfer rates at the surface were tabulated for various values of the flow parameters.The present results were compared with those of previously published studies andwere found to be in excellent agreement.This research has practical applications in areas such as drug delivery,thermal medicine and cancer treatment. 展开更多
关键词 Thermal radiation radiative flux NANOFLUID copper oxide titanium oxide accelerated plate
下载PDF
Dirac method for nonlinear and non-homogenous boundary value problems of plates
11
作者 Xiaoye MAO Jiabin WU +2 位作者 Junning ZHANG Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期15-38,共24页
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar... The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries. 展开更多
关键词 rectangular plate Dirac operator nonlinear boundary time-dependent boundary boundary value problem
下载PDF
Micro defects formation and dynamic response analysis of steel plate of quasi-cracking area subjected to explosive load
12
作者 Zheng-qing Zhou Ze-chen Du +5 位作者 Xiao Wang Hui-ling Jiang Qiang Zhou Yu-long Zhang Yu-zhe Liu Pei-ze Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期580-593,共14页
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin... As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center. 展开更多
关键词 Explosive load Quasi-cracking area Micro defects Steel plate Dynamic response Numerical simulation
下载PDF
Constitutive Behavior of the Interface between UHPC and Steel Plate without Shear Connector:From Experimental to Numerical Study
13
作者 Zihan Wang Boshan Zhang +2 位作者 Hui Wang Qing Ai Xingchun Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1863-1888,共26页
The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,... The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress. 展开更多
关键词 Cohesive zone model interfacial behavior finite element simulation UHPC steel plate
下载PDF
Thermodynamic Analysis and Optimization of Flat Plate Solar Collector Using TiO_(2)/Water Nanofluid
14
作者 Firas F.Qader Falah Z.Mohammed Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期61-73,共13页
To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tub... To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tubes,and aluminum heat-absorbing plates.Glass wool insulation minimized heat loss.A 0.5% TiO_(2)/Water nanofluid was created using a mechanical and ultrasonic stirrer.Results showed that solar radiation increased thermal efficiency until midday,reaching 48.48% for water and 51.23% for the nanofluid.With increasing mass flow rates from 0.0045 kg/s to 0.02 kg/s,thermal efficiency improved from 16.26% to 47.37% for water and from 20.65% to 48.76% for the nanofluid.Filtered water provided 380 W and 395 W of energy in March and April,while the nanofluid increased it to 395 W and 415 W during these months.Mass flow generated energy,and the Reynolds number raised entropy.The noon exergy efficiency for nanofluids was 50%-55%,compared to 30% for water.At noon,the broken exergy measured 877.53 W for the nanofluid and 880.12 W for water.In Kirkuk,Iraq,the 0.5% TiO_(2)/Water nanofluid outperformed water in solar collectors. 展开更多
关键词 ENERGY EXERGY entropy generation NANOFLUID flat plate solar collector
下载PDF
Optimization of Center of Gravity Position and Anti-Wave Plate Angle of Amphibious Unmanned Vehicle Based on Orthogonal Experimental Method
15
作者 Deyong Shang Xi Zhang +3 位作者 Fengqi Liang Chunde Zhai Hang Yang Yanqi Niu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2027-2041,共15页
When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navig... When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%. 展开更多
关键词 Amphibious unmanned vehicle orthogonal experimental design anti-wave plate center of gravity resistance characteristic
下载PDF
A novel triple periodic minimal surface-like plate lattice and its data-driven optimization method for superior mechanical properties
16
作者 Yanda WANG Yanping LIAN +2 位作者 Zhidong WANG Chunpeng WANG Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期217-238,共22页
Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM... Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM)technologies.In this work,a novel design of plate lattice structures described by a parametric model is proposed to enrich the design space of plate lattice structures with high connectivity suitable for AM processes.The parametric model takes the basic unit of the triple periodic minimal surface(TPMS)lattice as a skeleton and adopts a set of generation parameters to determine the plate lattice structure with different topologies,which takes the advantages of both plate lattices for superior specific mechanical properties and TPMS lattices for high connectivity,and therefore is referred to as a TPMS-like plate lattice(TLPL).Furthermore,a data-driven shape optimization method is proposed to optimize the TLPL structure for maximum mechanical properties with or without the isotropic constraints.In this method,the genetic algorithm for the optimization is utilized for global search capability,and an artificial neural network(ANN)model for individual fitness estimation is integrated for high efficiency.A set of optimized TLPLs at different relative densities are experimentally validated by the selective laser melting(SLM)fabricated samples.It is confirmed that the optimized TLPLs could achieve elastic isotropy and have superior stiffness over other isotropic lattice structures. 展开更多
关键词 lattice structure triple periodic minimal surface(TPMS) plate lattice structural optimization machine learning
下载PDF
Love wave propagation in one-dimensional piezoelectric quasicrystal multilayered nanoplates with surface effects
17
作者 Xin FENG Liaoliang KE Yang GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期619-632,共14页
The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the... The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects. 展开更多
关键词 piezoelectric quasicrystal(PQC)material multilayered plate dispersion characteristic surface effect
下载PDF
Study on damage mechanism and damage distribution of the rear plate under impact of debris cloud
18
作者 Chenyang Wu Xiaowei Chen Qiguang He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期151-167,共17页
The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of prot... The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate. 展开更多
关键词 Damage of rear plate Debris cloud Secondary impact Hypervelocity yaw impact FE-SPH adaptive method
下载PDF
Review of Computational Approaches to Optimization Problems in Inhomogeneous Rods and Plates
19
作者 Weitao Chen Chiu-Yen Kao 《Communications on Applied Mathematics and Computation》 EI 2024年第1期236-256,共21页
In this paper,we review computational approaches to optimization problems of inhomogeneous rods and plates.We consider both the optimization of eigenvalues and the localization of eigenfunctions.These problems are mot... In this paper,we review computational approaches to optimization problems of inhomogeneous rods and plates.We consider both the optimization of eigenvalues and the localization of eigenfunctions.These problems are motivated by physical problems including the determination of the extremum of the fundamental vibration frequency and the localization of the vibration displacement.We demonstrate how an iterative rearrangement approach and a gradient descent approach with projection can successfully solve these optimization problems under different boundary conditions with different densities given. 展开更多
关键词 Inhomogeneous rods and plates Bi-Laplacian Optimization of eigenvalues Localization of eigenfunctions REARRANGEMENT
下载PDF
PFNA2 versus 95 Degree Condylar Blade Plate in the Management of Unstable Trochanteric Fractures
20
作者 Piyush Gadegone Wasudeo Gadegone +1 位作者 Vijayanand Lokhande Virender Kadian 《Open Journal of Orthopedics》 2024年第2期93-104,共12页
Purpose: The proximal femoral nail anti-rotation (PFNA) is known to have advantages in enhancing the anchorage ability of internal fixation in elderly unstable osteoporotic intertrochanteric fracture patients. However... Purpose: The proximal femoral nail anti-rotation (PFNA) is known to have advantages in enhancing the anchorage ability of internal fixation in elderly unstable osteoporotic intertrochanteric fracture patients. However whether it is superior to condylar blade fixation is not clear. This study aimed to determine which treatment has better clinical outcomes in older patients. Materials and Methods: A total of 86 patients over the age of 60 with unstable trochanteric fractures within the past 3 weeks, were included in this prospective study conducted from June 1, 2018, to May 31, 2021. All the intertrochanteric fractures were classified according to AO/OTA classification. Among them, 44 cases were treated with the Proximal Femoral Nail (PFNA2) with or without an augmentation screw, and 42 cases were treated with the Condylar Blade Plate. In addition, the operative time, intraoperative blood loss, intraoperative and postoperative blood transfusion, postoperative weight-bearing time, hospitalization time, Harris score of hip function, Kyle’s criteria and postoperative complications were compared between the two groups. Results: The mean duration of surgery for the PFN group was 66.8 minutes (on average), whereas for the condylar blade plate group, it was 99.30 minutes (on average). The PFNA2 group experienced less blood loss (average of 80 mL) compared to the condylar blade plate group (average of 120 mL). Union and partial weight-bearing occurred earlier in the PFNA2 group (14.1 weeks and 10.6 weeks, respectively) compared to the Condylar blade plate group (18.7 weeks and 15.8 weeks). In two patients from the PFNA2 group, screw backing out and varus collapse complications were encountered;however, these patients remained asymptomatic and did not require revision surgery. In two other patients, screw cut out and breakage of the nail at the helical screw hole leading to non-union of the proximal femur were observed during the nine-month follow-up, necessitating revision surgery with prosthetic replacement. Among the condylar blade plate group, three patients experienced complications, including blade breakage at the blade and plate junction. In two cases, the fracture united in varus, and in one case, the blade cut through, resulting in non-union of the femoral head, which required revision surgery. According to the Harris hip score and Kyle’s criteria, a good-excellent outcome was observed in 92.85% of cases in the PFNA2 group and 90.90% of cases in the condylar blade plate group. Conclusion: Both the Proximal Femoral Nail A2 and Condylar blade plate are effective implants for the treatment of unstable trochanteric fractures. The intramedullary implant promotes biological healing and allows for early ambulation with minimal complications. Similarly satisfactory restoration of anatomy and favorable radiological and functional results can be achieved with the biological fixation provided by the 95-degree condylar blade plate. However, the use of PFNA2 internal fixation technique has the advantage of less trauma in elderly patients than the 95-degree condylar blade plate. 展开更多
关键词 Proximal Femoral Nail Anti-Rotation Condylar Blade plate Internal Fixation Unstable Intertrochanteric Fracture OSTEOPOROTIC
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部