期刊文献+
共找到2,387篇文章
< 1 2 120 >
每页显示 20 50 100
Highly Flexible Graphene-Film-Based Rectenna for Wireless Energy Harvesting 被引量:1
1
作者 Jingwei Zhang Yuchao Wang +2 位作者 Rongguo Song Zongkui Kou Daping He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期320-325,共6页
Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductiv... Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductivity of up to 1×10^(6)S m^(-1)and good resistive stability of FGMFs even under extensive bending,the FGMFs-based rectifying circuit(GRC)exhibits good flexibility and RF-to-DC efficiency of 53%at 2.1 GHz.Moreover,we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy.The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%,46%,and 44%at the 5th Generation(5G)2.1 GHz,Industrial Long-Term Evolution(LTE)2.3 GHz,and Scientific Medical(ISM)2.45 GHz,respectively.A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna.The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%.All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things(loT)applications. 展开更多
关键词 flexible rectennas highly flexible graphene-based films wireless energy harvesting
下载PDF
Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network 被引量:1
2
作者 Zhenkun Jin Yixuan Geng +4 位作者 Chenlu Zhu Yunzhi Xia Xianjun Deng Lingzhi Yi Xianlan Wang 《Digital Communications and Networks》 SCIE CSCD 2024年第2期498-508,共11页
Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel ne... Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms. 展开更多
关键词 energy harvesting WSN Deployment optimization Confident information coverage(CIC) Target perpetual coverage
下载PDF
Advances in Triboelectric Nanogenerators for Blue Energy Harvesting and Marine Environmental Monitoring
3
作者 Yang Jiang Xi Liang +1 位作者 Tao Jiang Zhong Lin Wang 《Engineering》 SCIE EI CAS CSCD 2024年第2期204-224,共21页
Blue energy,which includes rainfall,tidal current,wave,and water-flow energy,is a promising renewable resource,although its exploitation is limited by current technologies and thus remains low.This form of energy is m... Blue energy,which includes rainfall,tidal current,wave,and water-flow energy,is a promising renewable resource,although its exploitation is limited by current technologies and thus remains low.This form of energy is mainly harvested by electromagnetic generators(EMGs),which generate electricity via Lorenz force-driven electron flows.Triboelectric nano genera tors(TENGs)and TENG networks exhibit superiority over EMGs in low-frequency and high-entropy energy harvesting as a new approach for blue energy harvesting.A TENG produces electrical outputs by adopting the mechanism of Maxwell’s displacement current.To date,a series of research efforts have been made to optimize the structure and performance of TENGs for effective blue energy harvesting and marine environmental applications.Despite the great progress that has been achieved in the use of TENGs in this context so far,continuous exploration is required in energy conversion,device durability,power management,and environmental applications.This review reports on advances in TENGs for blue energy harvesting and marine environmental monitoring.It introduces the theoretical foundations of TENGs and discusses advanced TENG prototypes for blue energy harvesting,including TENG structures that function in freestanding and contact-separation modes.Performance enhancement strategies for TENGs intended for blue energy harvesting are also summarized.Finally,marine environmental applications of TENGs based on blue energy harvesting are discussed. 展开更多
关键词 Triboelectric nanogenerator TENG networks Blue energy energy harvesting Ocean sensors
下载PDF
Energy Harvesting in the Wake of An Inverted C-Shaped Bluff Body
4
作者 WANG Jun-lei LI Shen-fang +2 位作者 Md.Mahbub ALAM ZHU Hong-jun HU Guo-biao 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期68-80,共13页
This paper proposes a novel wake-induced vibration(WIV)-based energy harvesting system consisting of two bluff bodies.An inverted C-shaped bluff body is stationary installed at the upstream position to generate an int... This paper proposes a novel wake-induced vibration(WIV)-based energy harvesting system consisting of two bluff bodies.An inverted C-shaped bluff body is stationary installed at the upstream position to generate an interference wake street,and a cylinder bluff body equipped with a transducer is elastically suspended at the downstream position to harness WIV energy.The hydrodynamics and energy harvesting(EH)performance of the proposed system are investigated via experimental studies.The reduced velocity(U*)ranging from 2 to 14(the corresponding Reynolds number ranging from 15100 to 106200)is considered in the present study.It is found that the wake generated by the inverted C-shaped bluff body significantly affects the EH performance.Enlarging the opening angle(α)of the C-shaped bluff body increases the vibration amplitude of the downstream cylinder,thereby increasing the harvested power.When the spacing(L)between two bluff bodies is two times the cylinder diameter(D),the wake-induced vibration(WIV)mode is observed,while the combined WIV and wake galloping(WG)mode occurs whenαis 150°,and L equals 3D or 4D.The average drag coefficient becomes negative when L is 2D,3D,or 4D.By carefully configuring a C-shaped bluff body,the wake generated by it can bring an augmenting effect on the vibration of the downstream EH cylinder.For example,the RMS power output of the proposed EH system reaches a maximum of 0.31 W at U*=8 and L=4D,which is 300%greater than that of its traditional counterpart.Furthermore,after a number of case stud-ies,it is identified that the proposed EH system can achieve the best performance whenαis 150°and L=2D. 展开更多
关键词 wake-induced vibration vortex-induced vibration GALLOPING energy harvesting bluff body
下载PDF
Review of the Tuned Mass Damper Inerter(TMDI)in Energy Harvesting and Vibration Control:Designs,Analysis and Applications
5
作者 Xiaofang Kang Qiwen Huang +3 位作者 Zongqin Wu Jianjun Tang Xueqin Jiang Shancheng Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2361-2398,共38页
Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends thro... Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends through its“inertial”constant.Due to its unique mechanical properties,TMDI has received widespread attention and application in the past twenty years.As different configurations are required in different practical situations,TMDI is still active in the research on vibration control and energy harvesting in structures.This paper provides a comprehensive review of the research status of TMDI.This work first examines the generation and important vibration control characteristics of TMDI.Then,the energy harvesting performance of electromagnetic tuned mass damper inerter(EM-TMDI)is discussed.This work emphasizes the formation of a passive dynamic vibration absorber by coupling traditional TMD with inertial devices.This paper also summarizes the design and implementation of optimal vibration control and energy harvesting for TMDI.Furthermore,this paper details the applications of TMDI in the fields of bridges and building engineering.Finally,this paper summarizes the necessity of research on tuned mass-damper-inertia,the challenges faced currently,and future research directions,such as control of parameters in electromagnetic energy harvesting TMDI systems and low-cost TMDI. 展开更多
关键词 TMDI EM-TMDI energy harvesting vibration control inertial device
下载PDF
Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting
6
作者 谢佳衡 杨涛 唐介 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期366-379,共14页
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t... Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices. 展开更多
关键词 multilink-spring mechanism nonlinear dynamics vibration isolation energy harvester
下载PDF
A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting
7
作者 Long ZHAO Zeqi LU +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1243-1260,共18页
Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of... Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of vibratory energy within the band gap can be improved by using viscoelastic materials.This paper designs an integrated viscoelastic metamaterial for energy harvesting and vibration isolation.The viscoelastic metamaterial is achieved by a viscoelastic beam periodically arrayed with spatial ball-pendulum nonlinear energy harvesters.The nonlinear resonator with an energy harvesting function is achieved by placing a free-rolling magnetic ball in a spherical cavity with an additional induction coil.The dynamic equations of viscoelastic metamaterials under transverse excitation are established,and the energy harvesting and vibration isolation characteristics within the dispersion relation of viscoelastic metamaterials are analyzed.The results show that the vibrations of the main body of the viscoelastic metamaterial beam are significantly suppressed in the frequency range of the local resonance band gap.At the same time,the elastic waves are limited in the nonlinear resonator with an energy harvesting function,which improves the energy output.Finally,an experimental platform of viscoelastic metamaterial vibration is established for validation purposes. 展开更多
关键词 viscoelastic metamaterial nonlinear vibration vibration isolation energy harvesting
下载PDF
On the role of sliding friction effect in nonlinear tri-hybrid vibration-based energy harvesting
8
作者 Jiamei WANG Siukai LAI +2 位作者 Chen WANG Yiting ZHANG Zhaolin CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1295-1314,共20页
This work aims to develop an experimental investigation into the effectiveness of the sliding-mode approach for hybrid vibration-based energy harvesting.A proposed sliding-mode triboelectric-electromagnetic-piezoelect... This work aims to develop an experimental investigation into the effectiveness of the sliding-mode approach for hybrid vibration-based energy harvesting.A proposed sliding-mode triboelectric-electromagnetic-piezoelectric energy harvesting model involves a cantilever beam with a tip mass exposed to magnetic and frictional forces.The experimental findings indicate that the system can achieve its peak inter-well oscillation output within a low-frequency range of 4 Hz–6 Hz.Friction has a lesser impact on the open-circuit voltage output at an excitation acceleration of 1.5g compared with 1g.The distribution of tri-stability changes with the presence of friction.This model provides a deeper understanding of the influence of the dry friction coefficient(0.2–0.5) on the interactive behaviors of different generator units. 展开更多
关键词 sliding mode tri-hybrid energy harvesting FRICTION nonlinear behavior
下载PDF
Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools
9
作者 Manpreet Kaur Avinash Alagumalai +3 位作者 Omid Mahian Sameh M.Osman Tadaaki Nagao Zhonglin Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期332-341,共10页
Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,... Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat. 展开更多
关键词 ceramic microfibers energy harvesting power generation self-powered systems water evaporation
下载PDF
A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential
10
作者 Xuemei Song Yuan Chao Pan +4 位作者 Chang Bao Han Chang Xin Liu Yaxiaer Yalikun Hui Yan Yang Yang 《Materials Reports(Energy)》 EI 2024年第3期69-76,共8页
Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply,resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the s... Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply,resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the sustainable development of distributed ocean sensing networks.Here,we design a deep-sea differential-pressure triboelectric nanogenerator(DP-TENG)based on a spiral shaft drive using modified polymer materials to harness the hydrostatic pressure gradient energy at varying ocean depths to power underwater equipment.The spiral shaft structure converts a single compression into multiple rotations of the TENG rotor,achieving efficient conversion of differential pressure energy.The multi-pair electrode design enables the DP-TENG to generate a peak current of 61.7μA,the instantaneous current density can reach 0.69μA cm^(-2),and the output performance can be improved by optimizing the spiral angle of the shaft.The DP-TENG can charge a 33μF capacitor to 17.5 V within five working cycles.It can also power a digital calculator and light up 116 commercial power light-emitting diodes,demonstrating excellent output capability.With its simple structure,low production cost,and small form factor,the DP-TENG can be seamlessly integrated with underwater vehicles.The results hold broad prospects for underwater blue energy harvesting and are expected to contribute to the development of self-powered equipment toward emerging“smart ocean”and blue economy applications. 展开更多
关键词 Triboelectric nanogenerators Blue energy energy harvesting Differential pressure energy Self-power sensor
下载PDF
Performance Analysis and Optimization of Energy Harvesting Modulation for Multi-User Integrated Data and Energy Transfer
11
作者 Yizhe Zhao Yanliang Wu +1 位作者 Jie Hu Kun Yang 《China Communications》 SCIE CSCD 2024年第1期148-162,共15页
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ... Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance. 展开更多
关键词 energy harvesting modulation(EHM) integrated data and energy transfer(IDET) performance analysis wireless data transfer(WDT) wireless energy transfer(WET)
下载PDF
Outage Analysis of Optimal UAV Cooperation with IRS via Energy Harvesting Enhancement Assisted Computational Offloading
12
作者 Baofeng Ji Ying Wang +2 位作者 Weixing Wang Shahid Mumtaz Charalampos Tsimenidis 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1885-1905,共21页
The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of e... The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of employing intelligent reflective surfaces(IRS)andUAVs as relay nodes to efficiently offload user computing tasks to theMEC server system model.Specifically,the user node accesses the primary user spectrum,while adhering to the constraint of satisfying the primary user peak interference power.Furthermore,the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes,namely time switching(TS)and power splitting(PS).The selection of the optimal UAV is based on the maximization of the instantaneous signal-to-noise ratio.Subsequently,the analytical expression for the outage probability of the system in Rayleigh channels is derived and analyzed.The study investigates the impact of various system parameters,including the number of UAVs,peak interference power,TS,and PS factors,on the system’s outage performance through simulation.The proposed system is also compared to two conventional benchmark schemes:the optimal UAV link transmission and the IRS link transmission.The simulation results validate the theoretical derivation and demonstrate the superiority of the proposed scheme over the benchmark schemes. 展开更多
关键词 Unmanned aerial vehicle(UAV) intelligent reflective surface(IRS) energy harvesting computational offloading outage probability
下载PDF
Radio resource management in energy harvesting cooperative cognitive UAV assisted IoT networks:A multi-objective approach
13
作者 Muhammad Rashid Ramzan Muhammad Naeem +2 位作者 Omer Chughtai Waleed Ejaz Mohammad Altaf 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1088-1102,共15页
Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to... Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to achieve maximal energy and spectral efficiency in upcoming wireless systems.In this work,a cooperative CIoT system is contemplated,in which a source acts as a satellite,communicating with multiple CIoT devices over numerous relays.Unmanned Aerial Vehicles(UAVs)are used as relays,which are equipped with onboard Energy Harvesting(EH)facility.We adopted a Power Splitting(PS)method for EH at relays,which are harvested from the Radio frequency(RF)signals.In conjunction with this,the Decode and Forward(DF)relaying strategy is used at UAV relays to transmit the messages from the satellite source to the CIoT devices.We developed a Multi-Objective Optimization(MOO)framework for joint optimization of source power allocation,CIoT device selection,UAV relay assignment,and PS ratio determination.We formulated three objectives:maximizing the sum rate and the number of admitted CIoT in the network and minimizing the carbon dioxide emission.The MOO formulation is a Mixed-Integer Non-Linear Programming(MINLP)problem,which is challenging to solve.To address the joint optimization problem for an epsilon optimal solution,an Outer Approximation Algorithm(OAA)is proposed with reduced complexity.The simulation results show that the proposed OAA is superior in terms of CIoT device selection and network utility maximization when compared to those obtained using the Nonlinear Optimization with Mesh Adaptive Direct-search(NOMAD)algorithm. 展开更多
关键词 Cooperative communication energy harvesting Power splitting Unmanned aerial vehicles Cognitive radio Internet of things Multi-objective optimization Relay assignment Power allocation
下载PDF
Security-Reliability Analysis and Optimization for Cognitive Two-Way Relay Network with Energy Harvesting
14
作者 Luo Yi Zhou Lihua +3 位作者 Dong Jian Sun Yang Xu Jiahui Xi Kaixin 《China Communications》 SCIE CSCD 2024年第11期163-179,共17页
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node... This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm. 展开更多
关键词 artificial noise energy harvesting cognitive two-way relay network hardware impairments physical layer security security-reliability tradeoff self-adaptive quantum particle swarm optimization
下载PDF
Effect of Nanostructures Addition and Enhancement of Poly (Vinylidene Difluoride) (PVDF) Energy Harvesting
15
作者 Omar Peña-Oliveras Brenda Javier-Boodhan +1 位作者 Anthony La Santa Juan Gonzalez-Sanchez 《Materials Sciences and Applications》 2024年第7期228-244,共17页
With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive ... With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM). 展开更多
关键词 Poly (Vinylidene Fluoride) (PVDF) energy harvesting ELECTROSPINNING Nanoparticles ZnO MgO FE3O4
下载PDF
A viscoelastic nonlinear energy sink with an electromagnetic energy harvester:Narrow-band random response
16
作者 廖志晶 孙亚辉 刘洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期147-156,共10页
Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high v... Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance. 展开更多
关键词 nonlinear energy sink fractional-order damping multiple-scale method energy harvester
下载PDF
Performance enhancement of a viscoelastic bistable energy harvester using time-delayed feedback control
17
作者 黄美玲 杨勇歌 刘洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期142-154,共13页
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff... This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored. 展开更多
关键词 energy harvesting BISTABILITY stochastic averaging method stochastic resonance time-delayed feedback control
下载PDF
Integrated device for multiscale series vibration reduction and energy harvesting 被引量:1
18
作者 Jihou YANG Weixing ZHANG Xiaodong YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2227-2242,共16页
A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration a... A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration absorber(NVA)and piezoelectric components.Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives.Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy.Main resonance and higher-order resonance are the main reasons for efficient energy transfer.The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range.Compared with the single structures with and without precompression,the multiscale NVA-piezoelectric device offers significant vibration reduction advantages.In addition,there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting. 展开更多
关键词 integrated device nonlinear vibration reduction energy harvesting transient vibration energy principle
下载PDF
Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator 被引量:1
19
作者 Chanil Park Woohwa Lee +4 位作者 Choyeon Park Sungmin Park Jaeho Lee Yong Seok Kim Youngjae Yoo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期496-501,共6页
Passive daytime radiative cooling(PDRC) is useful for thermal management because it allows an object to emit terrestrial heat into space without the use of additional energy.To produce sub-ambient temperatures under d... Passive daytime radiative cooling(PDRC) is useful for thermal management because it allows an object to emit terrestrial heat into space without the use of additional energy.To produce sub-ambient temperatures under direct sunlight,PDRC materials are designed to reduce their absorption of solar energy and to enhance their long-wavelength infrared(LWIR) emissivity.In recent years,many photonic structures and polymer composites have been studied to improve the cooling system of buildings.However,in cold weather(i.e. during winter in cold climates),buildings need to be kept warm rather than cooled due to heat loss.To overcome this limitation,temperature-responsive radiative cooling is a promising alternative.In the present study,adaptive radiative cooling(ARC) film fabricated from a polydimethylsiloxane/hollow SiO_(2) microsphere/thermochromic pigment composite was investigated.We found that the ARC film absorbed solar radiation under cold conditions while exhibiting radiative cooling at ambient temperatures above 40℃.Thus,in outdoor experiments,the ARC film achieved sub-ambient temperatures and had a theoretical cooling power of 63.2 W/m~2 in hot weather.We also demonstrated that radiative cooling with an energy harvesting system could be used to improve the energy management of buildings,with the thermoelectric module continuously generating output power using the ARC film.Therefore,we believe that our proposed ARC film can be employed for efficient thermal management of buildings and all-season energy harvesting in the near future. 展开更多
关键词 Thermal management Daytime radiative cooling Temperature-adaptive film Thermoelectric device energy harvesting
下载PDF
Enhanced vibration suppression and energy harvesting in fluid-conveying pipes
20
作者 Yang JIN Tianzhi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1487-1496,共10页
A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlin... A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlinear energy harvesters(NEHs).The governing equation is derived,and a second-order discrete system is used to assess the performance of the developed device.The results demonstrate that the proposed absorber achieves significantly enhanced energy dissipation efficiency,reaching up to 95%,over a wider frequency range.Additionally,it successfully harvests additional electric energy.This research establishes a promising avenue for the development of new nonlinear devices aimed at suppressing fluid-conveying pipe vibrations across a broad frequency spectrum. 展开更多
关键词 fuid-conveying pipe vibration suppression nonlinear energy sink(NES) electromagnetic energy harvesting
下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部