Diabetes mellitus and depression exhibit a complex bidirectional relationship that profoundly impacts patient health and quality of life.This review explores the physiological mechanisms,including inflammation,oxidati...Diabetes mellitus and depression exhibit a complex bidirectional relationship that profoundly impacts patient health and quality of life.This review explores the physiological mechanisms,including inflammation,oxidative stress,and neu-roendocrine dysregulation,that link these conditions.Psychosocial factors such as social support and lifestyle choices also contribute significantly.Epidemiological insights reveal a higher prevalence of depression among diabetics and an in-creased risk of diabetes in depressed individuals,influenced by demographic variables.Integrated management strategies combining mental health asse-ssments and personalized treatments are essential.Future research should focus on longitudinal and multi-omics studies to deepen understanding and improve therapeutic outcomes.展开更多
Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite s...Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.展开更多
Lonicerae japonicae Flos(LF)is a kind of healthcare food with hepatoprotective function.This study was designed to explore the spectrum-effect relationships between UPLC fingerprints and the hepatoprotective effects o...Lonicerae japonicae Flos(LF)is a kind of healthcare food with hepatoprotective function.This study was designed to explore the spectrum-effect relationships between UPLC fingerprints and the hepatoprotective effects of LF.Fingerprints of ten batches of LF were established by UPLC-PDA.The inhibitory levels of AST and ALT were used as pharmacological indexes,and secoxyloganin,isochlorogenic acid A and isochlorogenic acid C were screened as hepatoprotective active compounds by grey relational analysis(GRA)and partial least squares regression analysis(PLSR).Caspase-3 was obtained by network pharmacology as a key target of hepatoprotective active compounds.Molecular docking is used to explore the interaction between small molecules and proteins.This work provided a general model of the combination of UPLC-PDA and hepatoprotective effect to study the spectrum-effect relationship of LF,which can be used to considerable methods and insight for the fundamental research of the material basis of similar healthcare food.展开更多
Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow...Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification.展开更多
Engineered bamboo has recently received lots of attention of civil engineers and professional researchers due to its better mechanical performance than that of softwood timber.Parallel strand bamboo is one important p...Engineered bamboo has recently received lots of attention of civil engineers and professional researchers due to its better mechanical performance than that of softwood timber.Parallel strand bamboo is one important part of engineered bamboo for its excellent durable performance compared to the laminated veneer bamboo.The required curing temperature in hot-pressing process is usually higher than 120°C to reduce the content of nutri-tional ingredients and hemy cellulose,and to avoid the decay from the environment and insects.Nonetheless,the appearance of engineered bamboo gets darker with the increase of temperature during the hot-pressing process.In order to minimize the color deepening while maintaining the durability,a high-durable parallel strand bamboo(HPSB)with relative high hot-pressing temperature(140°C)was produced and tested.The present study inves-tigates the mechanical performance through tension,compression,shear and bending tests.The experimental behavior of the specimens was identified,including the failure mode and load-displacement relationship.It was demonstrated that the HPSB material had better mechanical performance parallel to grain,making it as a considerable structural material.The average elastic modulus parallel to grain was 14.1 GPa,and the tensile and compressive strengths were 120.7 MPa and 121.0 MPa,respectively.The tension perpendicular to grain should be avoided in the practical application due to the lower strength and elastic modulus.Two stress-strain relationships of tension and compression parallel to grain,including three-linear and quadratic function models,were proposed and compared with the experimental results.The three-linear model was then applied to the finite element model.The finite element analysis using ANSYS software was conducted to validate the feasibility of the constitutive relationship.The quadratic function model showed better agreement with the experimental results,but the three-linear relationship was also precise enough to analyze the bending tests of HPSB material,whereas being less accurate to describe the elastic-plastic compression behavior.展开更多
Lentinula edodes is the second largest edible mushroom in the world and is widely used as food and medicine.Modern research shows that lentinan(LNT)is the main active component of L.edodes.It has anti-cancer,treatment...Lentinula edodes is the second largest edible mushroom in the world and is widely used as food and medicine.Modern research shows that lentinan(LNT)is the main active component of L.edodes.It has anti-cancer,treatment of diabetes,intestinal protection,anti-inflammatory,anti-oxidation,anti-aging,hepatoprotective,immune-regulating effects.In this review,the biological activity,action mechanism and structure-activity relationship of LNT in recent years are reviewed.On this basis,the existing problems were discussed,and the future research and application of LNT were prospected.Finally,it is hoped that this review will promote the in-depth study of LNT and provide a reference for its development as a drug and functional food.展开更多
Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high ac...Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.展开更多
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
The axial compressive strength,axial tensile strength,elastic modulus,poisson ratio and stress-strain relationship of RPC are obtained by compressive tests and tensile tests of RPC prism.Mathematical models of axial c...The axial compressive strength,axial tensile strength,elastic modulus,poisson ratio and stress-strain relationship of RPC are obtained by compressive tests and tensile tests of RPC prism.Mathematical models of axial compressive and axial tensile stress-strain relationship are established,from which the equivalent coefficient of compressive and tensile stress diagram of cross-section in RPC beam are deduced.The results provide the theory basis for the design of RPC structure and the wider popularization of RPC.展开更多
The mechanical behaviors and the microstructural characteristics of TC11 alloy with quenched martensite microstructure during hot compressive deformation were investigated. It shows that at various temperatures and st...The mechanical behaviors and the microstructural characteristics of TC11 alloy with quenched martensite microstructure during hot compressive deformation were investigated. It shows that at various temperatures and strain rates, the stress strain curves firstly exhibit strain hardening, then strain softening and finally reach the steady deformation state; in the meanwhile, the initial lamellar microstructure is transformed into the equiaxed and uniform one through dynamic recrystallization. It shows that the present TC11 alloy has different Z D relationships in relatively lower temperature (RLT) range and relatively higher temperature (RHT) range, which is believed to be due to different deformation activation energies. During RHT deformation, dynamic recrystallization occurs in both α phases and β phases, but during RLT deformation, dynamic recrystallization only occurs in α phases and in the meanwhile β phases undergo a process of precipitation and growth.展开更多
For developing new binder phase with high performance, Co-Ni-Fe alloy was used as binder in cemented carbides. The mechanical properties of WC-CoNiFe and WC-Co cemented carbides with different grain sizes were studied...For developing new binder phase with high performance, Co-Ni-Fe alloy was used as binder in cemented carbides. The mechanical properties of WC-CoNiFe and WC-Co cemented carbides with different grain sizes were studied. The results show that the reprecipitation of WC-CoNiFe is inhibited compared with that of WC-Co during sintering process, and the grains in WC-CoNiFe cemented carbides are more of smooth shape, resulting in a slightly lower hardness and higher transverse rupture strength. With the increase of the grain size, the hardness of the two cemented carbides decreases, and the transverse rupture strength increases. However, the slope values of K in Hall-Petch relationship are higher in WC-CoNiFe than those in WC-Co, indicating the high toughness of medium entropy alloy Co-Ni-Fe.展开更多
The aim of this study is to provide the quantificational change laws of strength,stiffness,and deformation capacity of frost-damaged concrete relating to a united index,the data were obtained by different researchers....The aim of this study is to provide the quantificational change laws of strength,stiffness,and deformation capacity of frost-damaged concrete relating to a united index,the data were obtained by different researchers.Then the index of relative compressive strength(RCS) was introduced as the indicator of frost damage and a large number of mechanical performance testing data of frost-damaged concrete were collected and analyzed.By curve fitting,the correlations between RCS and the initial elastic modulus,the strain at peak compressive stress,and biaxial compressive strength,and tensile strength,and the strain at peak tensile stress were established.Thereafter,the analytical stress-strain response of frost-damaged concrete under monotonic loading was presented using RCS and compared with that of the experimental data.Moreover,an isotropic elastoplastic damage model of frost-damaged concrete subjected to repeated loading was established.Finally,we can systematically estimate the effects of frost-damage on the mechanical performance of concrete,which can be provided for the numerical simulation of frost-damaged concrete structures.展开更多
Tendril-bearing climbing plants must recur to the tendril helices with chiral perversion or dual chirality for climbing and to obtain sun exposure. Despite researchers' prolonged fascination with climbing tendrils...Tendril-bearing climbing plants must recur to the tendril helices with chiral perversion or dual chirality for climbing and to obtain sun exposure. Despite researchers' prolonged fascination with climbing tendrils since Darwin's time and even earlier, why the soft and slender tendrils can bear heavy loads such as the self-weight of a plant or additional load caused by rain remains elusive. In this paper, we take towel gourd tendrils as an example and investigate the macroscopic and microscopic mechanical behaviors of tendrils through experiments and simulations. Our study indicates that the tendril filament exhibits rubber-like hyperelastic behaviors and can particularly endure large elongation, which is mainly attributed to the superelasticity of the cellulose fibril helix contained in the cell wall. Combination of the tendril helical structure with dual chirality or chiral perversion at a macroscale and a cellulose filament helix at a subcellular level creates superior elasticity for biological species relying on support and climbing. This study provides deep insight into the structure-property relationship of climbing tendrils, and the relationship is useful for the bioinspired design of composite systems with superior elasticity.展开更多
As one of the most important factors that determine the lifespan of a reinforced concrete structure, carbonation not only corrodes the reinforcing steel, but also changes the mechanical properties of concrete. For bet...As one of the most important factors that determine the lifespan of a reinforced concrete structure, carbonation not only corrodes the reinforcing steel, but also changes the mechanical properties of concrete. For better understanding the performance of carbonated concrete structure, it is necessary to study the mechanical properties of carbonated concrete. The strees strain relationship of carbonated concrete was analyzed on the basis of experiments. The specimens were made by means of accelerated carbonation and then compressed on the testing machine. Some very important characteristics of carbonated concrete were revealed by the testing results. In addition, a useful constitutive model of carbonated concrete, which proved to be suitable for analyzing carbonated concrete members, was established in this research.展开更多
Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure f...Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.展开更多
We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bim...We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression,respectively,which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa,respectively.Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T-C asymmetry.However,due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression,the bimodal structure possesses a lower T-C asymmetry(0.68)compared to the uniform structure(0.56).Multiple extension twins occur during deformation,and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains.Furthermore,the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.展开更多
The failure of cement sheath integrity can be easily caused by alternating pressure during large-scale multistage hydraulic fracturing in shale-gas well.An elastic-plastic mechanical model of casing-cement sheath-form...The failure of cement sheath integrity can be easily caused by alternating pressure during large-scale multistage hydraulic fracturing in shale-gas well.An elastic-plastic mechanical model of casing-cement sheath-formation(CSF)system under alternating pressure is established based on the Mohr-Coulomb criterion and thick-walled cylinder theory,and it has been solved by MATLAB programming combining global optimization algorithm with Global Search.The failure mechanism of cement sheath integrity is investigated,by which it can be seen that the formation of interface debonding is mainly related to the plastic strain accumulation,and there is a risk of interface debonding under alternating pressure,once the cement sheath enters plasticity whether in shallow or deep well sections.The matching relationship between the mechanical parameters(elastic modulus and Poisson's ratio)of cement sheath and its integrity failure under alternating pressure in whole well sections is studied,by which it has been found there is a“critical range”in the Poisson's ratio of cement sheath.When the Poisson's ratio is below the“critical range”,there is a positive correlation between the yield internal pressure of cement sheath(SYP)and its elastic modulus.However,when the Poisson's ratio is above the“critical range”,there is a negative correlation.The elastic modulus of cement sheath is closely related to its Poisson's ratio,and restricts each other.Scientific and reasonable matching between mechanical parameters of cement sheath and CSF system under different working conditions can not only reduce the cost,but also protect the cement sheath integrity.展开更多
The orientation relationships,carbon partitioning and strengthening mechanism of a novel ultrahigh strength steel were analyzed in depth during the complex process of heat treatment.The experimental results reveal tha...The orientation relationships,carbon partitioning and strengthening mechanism of a novel ultrahigh strength steel were analyzed in depth during the complex process of heat treatment.The experimental results reveal that the(011)α//()γ,[100]α//[011]γ orientation relationships can be drawn between martensite and retained austenite.The position and angle of martensite and retained austenite are shown more clearly from the stereographic projections.Moreover,the calculated results show that the carbon content near the austenite interface is the highest in the shorter carbon allocation time.With the further increase of time,its carbon content gradually decreases.Furthermore,a model of the relationship between yield strength and strengthening mechanism was established.It was proved that the main strengthening components contributing to the yield strength include Orowan strengthening,grain-size strengthening and dislocation hardening.The main strengthening mechanism of steel in this experiment is dislocation strengthening.展开更多
Corporations actively fulfilling corporate social responsibility(CSR)is of more significance to society's sustainable development nowadays.This research discusses the interaction between CSR and corporate performa...Corporations actively fulfilling corporate social responsibility(CSR)is of more significance to society's sustainable development nowadays.This research discusses the interaction between CSR and corporate performance and then adopts other mediation variables to explain the underlying mechanism.The empirical analyses are performed on a sample of 201 listed Chinese firms.The result shows that CSR has a weak negative impact on corporate perfbnnance while being positively influenced by corporate performance significantly.Further study finds the reason may be CSR requires financial support,but has little to do with increasing shareholder wealth.展开更多
文摘Diabetes mellitus and depression exhibit a complex bidirectional relationship that profoundly impacts patient health and quality of life.This review explores the physiological mechanisms,including inflammation,oxidative stress,and neu-roendocrine dysregulation,that link these conditions.Psychosocial factors such as social support and lifestyle choices also contribute significantly.Epidemiological insights reveal a higher prevalence of depression among diabetics and an in-creased risk of diabetes in depressed individuals,influenced by demographic variables.Integrated management strategies combining mental health asse-ssments and personalized treatments are essential.Future research should focus on longitudinal and multi-omics studies to deepen understanding and improve therapeutic outcomes.
基金financially supported by the National Natural Science Foundation of China(32201969)Natural Science Foundation of Henan Province(212300410297)+3 种基金Basic Research Plan of Higher Education School Key Scientific Research Project of Henan Province(21A550014)Doctoral Research Foundation of Zhengzhou University of Light Industry(2020BSJJ015)Program for Science and Technology Innovation Talents in Universities of Henan Province(20HASTIT037)Youth Talents Project of Henan Province(2020HYTP046).
文摘Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.
基金financially supported by the National Natural Science Foundation of China (81973604, 81803690 and 81703684)Special Funds from the Central Finance to Support the Development of Local Universities+12 种基金the National Natural Science Foundation Matching Project (2018PT02)the Innovative Talents Funding of Heilongjiang University of Chinese Medicine (2018RCD25)the Postdoctoral Initial Fund of Heilongjiang Province (UNPYSCT 2017219)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2017215)the National Natural Science Foundation Matching Project (2017PT01)the Natural Science Foundation of Heilongjiang Province (H2015037)the Heilongjiang University of Chinese Medicine Doctoral Innovation Foundation (2014bs05)the Application Technology Research and Development Projects of Harbin Technology Bureau (2014RFQXJ149)the Heilongjiang Postdoctoral Scientific Research Developmental Fund (LBH-Q16210 and LBH-Q17161)the Heilongjiang University of Chinese Medicine Doctoral Innovation Foundation (2013bs04)the scientific research project of Heilongjiang Provincial Health Commission (20211313050171)Heilongjiang Touyan Innovation Team ProgramNational Famous Old Traditional Chinese Medecine Experts Inheritance Studio Construction Program of National Administration of TCM ([2022]No.75)
文摘Lonicerae japonicae Flos(LF)is a kind of healthcare food with hepatoprotective function.This study was designed to explore the spectrum-effect relationships between UPLC fingerprints and the hepatoprotective effects of LF.Fingerprints of ten batches of LF were established by UPLC-PDA.The inhibitory levels of AST and ALT were used as pharmacological indexes,and secoxyloganin,isochlorogenic acid A and isochlorogenic acid C were screened as hepatoprotective active compounds by grey relational analysis(GRA)and partial least squares regression analysis(PLSR).Caspase-3 was obtained by network pharmacology as a key target of hepatoprotective active compounds.Molecular docking is used to explore the interaction between small molecules and proteins.This work provided a general model of the combination of UPLC-PDA and hepatoprotective effect to study the spectrum-effect relationship of LF,which can be used to considerable methods and insight for the fundamental research of the material basis of similar healthcare food.
基金the National Natural Science Foundation of China(22178241,21908152 and 21978189)State Key Laboratory of Chemical Engineering,China(SKL-ChE-21A01).
文摘Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification.
基金The authors acknowledge funding supported by the Fundamental Research Funds for the Central Universities of China(No.BLX201706)supported by Major Science and Technology Program for Water Pollution Control and Treatment(No.2017ZX07102-001)supported by the National Natural Science Foundation of China(Nos.51908038 and 31770602)。
文摘Engineered bamboo has recently received lots of attention of civil engineers and professional researchers due to its better mechanical performance than that of softwood timber.Parallel strand bamboo is one important part of engineered bamboo for its excellent durable performance compared to the laminated veneer bamboo.The required curing temperature in hot-pressing process is usually higher than 120°C to reduce the content of nutri-tional ingredients and hemy cellulose,and to avoid the decay from the environment and insects.Nonetheless,the appearance of engineered bamboo gets darker with the increase of temperature during the hot-pressing process.In order to minimize the color deepening while maintaining the durability,a high-durable parallel strand bamboo(HPSB)with relative high hot-pressing temperature(140°C)was produced and tested.The present study inves-tigates the mechanical performance through tension,compression,shear and bending tests.The experimental behavior of the specimens was identified,including the failure mode and load-displacement relationship.It was demonstrated that the HPSB material had better mechanical performance parallel to grain,making it as a considerable structural material.The average elastic modulus parallel to grain was 14.1 GPa,and the tensile and compressive strengths were 120.7 MPa and 121.0 MPa,respectively.The tension perpendicular to grain should be avoided in the practical application due to the lower strength and elastic modulus.Two stress-strain relationships of tension and compression parallel to grain,including three-linear and quadratic function models,were proposed and compared with the experimental results.The three-linear model was then applied to the finite element model.The finite element analysis using ANSYS software was conducted to validate the feasibility of the constitutive relationship.The quadratic function model showed better agreement with the experimental results,but the three-linear relationship was also precise enough to analyze the bending tests of HPSB material,whereas being less accurate to describe the elastic-plastic compression behavior.
基金Supported by National Natural Science Foundation of China (82360716).
文摘Lentinula edodes is the second largest edible mushroom in the world and is widely used as food and medicine.Modern research shows that lentinan(LNT)is the main active component of L.edodes.It has anti-cancer,treatment of diabetes,intestinal protection,anti-inflammatory,anti-oxidation,anti-aging,hepatoprotective,immune-regulating effects.In this review,the biological activity,action mechanism and structure-activity relationship of LNT in recent years are reviewed.On this basis,the existing problems were discussed,and the future research and application of LNT were prospected.Finally,it is hoped that this review will promote the in-depth study of LNT and provide a reference for its development as a drug and functional food.
基金sponsored by the National Natural Science Foundation China(32270115)National Key R&D Program of China(2018YFD0901102)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang(SJLY2021015)K.C.Wong Magna Fund of Ningbo University。
文摘Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
文摘The axial compressive strength,axial tensile strength,elastic modulus,poisson ratio and stress-strain relationship of RPC are obtained by compressive tests and tensile tests of RPC prism.Mathematical models of axial compressive and axial tensile stress-strain relationship are established,from which the equivalent coefficient of compressive and tensile stress diagram of cross-section in RPC beam are deduced.The results provide the theory basis for the design of RPC structure and the wider popularization of RPC.
文摘The mechanical behaviors and the microstructural characteristics of TC11 alloy with quenched martensite microstructure during hot compressive deformation were investigated. It shows that at various temperatures and strain rates, the stress strain curves firstly exhibit strain hardening, then strain softening and finally reach the steady deformation state; in the meanwhile, the initial lamellar microstructure is transformed into the equiaxed and uniform one through dynamic recrystallization. It shows that the present TC11 alloy has different Z D relationships in relatively lower temperature (RLT) range and relatively higher temperature (RHT) range, which is believed to be due to different deformation activation energies. During RHT deformation, dynamic recrystallization occurs in both α phases and β phases, but during RLT deformation, dynamic recrystallization only occurs in α phases and in the meanwhile β phases undergo a process of precipitation and growth.
基金Project(51671217)supported by the National Natural Science Foundation of ChinaProject(2016YFB0700302)supported by the National Key Research and Development Plan of China。
文摘For developing new binder phase with high performance, Co-Ni-Fe alloy was used as binder in cemented carbides. The mechanical properties of WC-CoNiFe and WC-Co cemented carbides with different grain sizes were studied. The results show that the reprecipitation of WC-CoNiFe is inhibited compared with that of WC-Co during sintering process, and the grains in WC-CoNiFe cemented carbides are more of smooth shape, resulting in a slightly lower hardness and higher transverse rupture strength. With the increase of the grain size, the hardness of the two cemented carbides decreases, and the transverse rupture strength increases. However, the slope values of K in Hall-Petch relationship are higher in WC-CoNiFe than those in WC-Co, indicating the high toughness of medium entropy alloy Co-Ni-Fe.
基金Funded by the Program of Innovative Team of the Ministry of Education of China(No.IRT13089)the National Natural Science Foundation of China(No.51078307)
文摘The aim of this study is to provide the quantificational change laws of strength,stiffness,and deformation capacity of frost-damaged concrete relating to a united index,the data were obtained by different researchers.Then the index of relative compressive strength(RCS) was introduced as the indicator of frost damage and a large number of mechanical performance testing data of frost-damaged concrete were collected and analyzed.By curve fitting,the correlations between RCS and the initial elastic modulus,the strain at peak compressive stress,and biaxial compressive strength,and tensile strength,and the strain at peak tensile stress were established.Thereafter,the analytical stress-strain response of frost-damaged concrete under monotonic loading was presented using RCS and compared with that of the experimental data.Moreover,an isotropic elastoplastic damage model of frost-damaged concrete subjected to repeated loading was established.Finally,we can systematically estimate the effects of frost-damage on the mechanical performance of concrete,which can be provided for the numerical simulation of frost-damaged concrete structures.
基金the National Natural Science Foundation of China (Grants 11872273, 11472191, 11602163, and 11672297)the Major Program of the National Science Foundation of China (Grant 11890683)+1 种基金the Opening Fund of State Key Laboratory of Nonlinear Mechanicsthe Australian Endeavour Research Fellowship.
文摘Tendril-bearing climbing plants must recur to the tendril helices with chiral perversion or dual chirality for climbing and to obtain sun exposure. Despite researchers' prolonged fascination with climbing tendrils since Darwin's time and even earlier, why the soft and slender tendrils can bear heavy loads such as the self-weight of a plant or additional load caused by rain remains elusive. In this paper, we take towel gourd tendrils as an example and investigate the macroscopic and microscopic mechanical behaviors of tendrils through experiments and simulations. Our study indicates that the tendril filament exhibits rubber-like hyperelastic behaviors and can particularly endure large elongation, which is mainly attributed to the superelasticity of the cellulose fibril helix contained in the cell wall. Combination of the tendril helical structure with dual chirality or chiral perversion at a macroscale and a cellulose filament helix at a subcellular level creates superior elasticity for biological species relying on support and climbing. This study provides deep insight into the structure-property relationship of climbing tendrils, and the relationship is useful for the bioinspired design of composite systems with superior elasticity.
文摘As one of the most important factors that determine the lifespan of a reinforced concrete structure, carbonation not only corrodes the reinforcing steel, but also changes the mechanical properties of concrete. For better understanding the performance of carbonated concrete structure, it is necessary to study the mechanical properties of carbonated concrete. The strees strain relationship of carbonated concrete was analyzed on the basis of experiments. The specimens were made by means of accelerated carbonation and then compressed on the testing machine. Some very important characteristics of carbonated concrete were revealed by the testing results. In addition, a useful constitutive model of carbonated concrete, which proved to be suitable for analyzing carbonated concrete members, was established in this research.
基金Project(U1637601)supported by the Joint Funds of the National Natural Science Foundation of China。
文摘Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.
基金financially supported by the National Natural Science Foundation of China (No. 52275305)the Fundamental Research Funds for the Central Universities (No. FRF-IC-20-10)the China Postdoctoral Science Foundation (No. 2021M700378)
文摘We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression,respectively,which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa,respectively.Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T-C asymmetry.However,due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression,the bimodal structure possesses a lower T-C asymmetry(0.68)compared to the uniform structure(0.56).Multiple extension twins occur during deformation,and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains.Furthermore,the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.
基金Research work was financed by the National Natural Science Foundation of China(No.52074232)Sichuan Science and Technology Program(No.2022NSFSC0028,No.2022NSFSC0994).Without their support,this work would not have been possible.
文摘The failure of cement sheath integrity can be easily caused by alternating pressure during large-scale multistage hydraulic fracturing in shale-gas well.An elastic-plastic mechanical model of casing-cement sheath-formation(CSF)system under alternating pressure is established based on the Mohr-Coulomb criterion and thick-walled cylinder theory,and it has been solved by MATLAB programming combining global optimization algorithm with Global Search.The failure mechanism of cement sheath integrity is investigated,by which it can be seen that the formation of interface debonding is mainly related to the plastic strain accumulation,and there is a risk of interface debonding under alternating pressure,once the cement sheath enters plasticity whether in shallow or deep well sections.The matching relationship between the mechanical parameters(elastic modulus and Poisson's ratio)of cement sheath and its integrity failure under alternating pressure in whole well sections is studied,by which it has been found there is a“critical range”in the Poisson's ratio of cement sheath.When the Poisson's ratio is below the“critical range”,there is a positive correlation between the yield internal pressure of cement sheath(SYP)and its elastic modulus.However,when the Poisson's ratio is above the“critical range”,there is a negative correlation.The elastic modulus of cement sheath is closely related to its Poisson's ratio,and restricts each other.Scientific and reasonable matching between mechanical parameters of cement sheath and CSF system under different working conditions can not only reduce the cost,but also protect the cement sheath integrity.
基金Funded by the Key Research and Development(R&D)Projects of Shanxi Province(No.201803D121028)the Research Project Supported by Shanxi Scholarship Council of China(No.2021-122)+1 种基金the Fundamental Research Program of Shanxi Province(No.20210302123014)the Shanxi Province Science Foundation for Youths(No.201901D211266)。
文摘The orientation relationships,carbon partitioning and strengthening mechanism of a novel ultrahigh strength steel were analyzed in depth during the complex process of heat treatment.The experimental results reveal that the(011)α//()γ,[100]α//[011]γ orientation relationships can be drawn between martensite and retained austenite.The position and angle of martensite and retained austenite are shown more clearly from the stereographic projections.Moreover,the calculated results show that the carbon content near the austenite interface is the highest in the shorter carbon allocation time.With the further increase of time,its carbon content gradually decreases.Furthermore,a model of the relationship between yield strength and strengthening mechanism was established.It was proved that the main strengthening components contributing to the yield strength include Orowan strengthening,grain-size strengthening and dislocation hardening.The main strengthening mechanism of steel in this experiment is dislocation strengthening.
文摘Corporations actively fulfilling corporate social responsibility(CSR)is of more significance to society's sustainable development nowadays.This research discusses the interaction between CSR and corporate performance and then adopts other mediation variables to explain the underlying mechanism.The empirical analyses are performed on a sample of 201 listed Chinese firms.The result shows that CSR has a weak negative impact on corporate perfbnnance while being positively influenced by corporate performance significantly.Further study finds the reason may be CSR requires financial support,but has little to do with increasing shareholder wealth.