The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated b...The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated by using the software.The profiles of gas and air velocity,temperature of the combustion products,concentration of the components,and the shape and length of the flame during combustion have been researched.Compared with the original annular ceramic burner,the new design of the blunt one improves the mixing of the gas and the air significantly,and shortened the length of the flame.展开更多
This paper investigates the effects of coflow O2 level and temperature on diffusion flame of a CH4/H2 jet in hot coflow (JHC) from a burner system similar to that of Dally et al. The coflow O2 mass fraction ( Yo2 ...This paper investigates the effects of coflow O2 level and temperature on diffusion flame of a CH4/H2 jet in hot coflow (JHC) from a burner system similar to that of Dally et al. The coflow O2 mass fraction ( Yo2 ) is varied from 3% to 80% and the temperature (Tcof) from 1200 K to 1700 K. The Eddy Dissipation Concept (EDC) model with detailed reaction mechanisms GRI-Mech 3.0 is used for all simulations. To validate the modeling, several JHC flames are predicted under the experimental conditions of Dally et al. [Proc. Combust. Inst., 29 (1), 1147-1154 (2002)] and the results obtained match well with the measurements. Results demonstrate that, when Yo2 decreased, the diffusion combustion is likely to transform from traditional combustion to MILD (Moderate or Intense Low-oxygen Dilution) combustion mode. When Tcof is higher, the temperature distribution over the whole domain trends to be more uniform. Reducing yo2 or Tcof leads to less production of intermediate species OH and CO. It is worth noting that if Yo2 is high enough ( Yo2 〉80%), increasing Yo2 does not cause obvious temperature increase.展开更多
The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization gro...The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group(RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation(EDS),probability density function(PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.展开更多
MgSiN2 powders have been synthesized by combustion synthesis (CS) using Mg and Si3N4 as starting materials at different nitrogen pressures. The CSed powders were then sintered by spark plasma sintering (SPS) to obtain...MgSiN2 powders have been synthesized by combustion synthesis (CS) using Mg and Si3N4 as starting materials at different nitrogen pressures. The CSed powders were then sintered by spark plasma sintering (SPS) to obtain dense bulk MgSiN2 product. Analysis of the CSed powder using X-ray diffraction (XRD) revealed single-phase MgSiN2 was obtained by CS method. However, the CSed product can be divided into three distinct parts according to its color. Scanning electron microscopy (SEM) observation revealed the grain size and crystallinity decrease gradually from the center to the outer layer. Some small grains clustered together to form larger particles, and there were a large number of pores among the clusters. The grain size seemed increasing with the increase of nitrogen pressure. The bulk density of CS-SPSed MgSiN2 was 3.11 g/cm3, Vickers hardness was 1673.1 kgf/mm2, and thermal diffusivity was 8.718E−2 cm2/s.展开更多
An experimental study investigated the characteristics of a stretched cylindrical diffusion flame, with a convex curvature with respect to the air stream, in response to periodic air flow velocity oscillation. The fue...An experimental study investigated the characteristics of a stretched cylindrical diffusion flame, with a convex curvature with respect to the air stream, in response to periodic air flow velocity oscillation. The fuel was methane diluted with nitrogen, and the oxidizer air. The oscillation frequency was varied from 5 to 250 Hz. The results are summarized as follows. Though the fluctuation amplitude of the air stream velocity gradient was constant with respect to the frequency, the amplitude of the fuel stream increased. The fluctuation amplitude of the flame radius changed quasi-steadily from 5 to 25 Hz, and decreased with increasing frequency in the frequency range greater than 50 Hz. The flame luminosity did not respond quasi-steadily at 5 Hz, and the oscillation amplitude of flame luminosity was less than that of a steady flame, over the same velocity fluctuation range. The oscillation amplitude of luminosity peaked at 50 Hz, and was greater than that of a steady flame. It is considered that this complex change in flame luminosity with respect to frequency was closely related to the phase difference in the respective time variations in the ratio of flame thickness to radius, the velocity gradients of the air and fuel streams, and the magnitude of these values, with the ratio of flame thickness to radius related to the flame curvature effect, the velocity gradient of the air stream correlated to the flame stretch effect, and the velocity gradient of the fuel stream impacting the fuel transportation.展开更多
In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffu...In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.展开更多
Based on a detailed chemical mechanism, impacts of combustion characteristics and flame structure on soot formation in opposed-flow diffusion ethylene flames was studied with different stoichiometric mixture fractions...Based on a detailed chemical mechanism, impacts of combustion characteristics and flame structure on soot formation in opposed-flow diffusion ethylene flames was studied with different stoichiometric mixture fractions in O2/N2and O2/CO2atmospheres. The results showed the followings. 1) In both atmospheres, with the increase of stoichiometric mixture fraction, the flame structure changed significantly. The stagnation plane shifted toward the oxidizer side. Furthermore, there were less C2H2 but more O and OH to occur in the soot inception zone, therefore the amount of soot in the flame decreased. 2) Compared withN2, CO2had a suppression effect on soot formation, which was mainly due to thermal and direct chemical interaction effects of CO2. This is because the specific heat capacity of CO2is higher than that of N2, which will cause the flame temperature to drop,and mole fractions of C2H2, H, O, OH and main PAHs to decrease. Soot oxidation played a dominant role, while soot surface growth was attributed to the secondary position. Meanwhile, when CO2 abounded in the flame, OH concentration was increased through the backward reaction of CO+OH=CO2+H, and this would be conducive to the oxidation of soot precursor and incipient soot particles. In addition, the results of maximum particle density indicated the thermal effect of CO2on soot for-mation is more important than the direct chemical interaction effect.展开更多
Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on t...Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on temperature distribution and CO and NO_(x)emissions.Reduced chemical kinetics was used where air and methane were assumed to be at their stoichiometric ratio,while thermo-physical properties were varied per the solid matrix porosity variation.Combustion characteristics were evaluated based on conduction and radiation as the two primary heat transfer modes within the solid matrix.Numerical simulations were carried out based on a packed bed with 3 mm alumina pellets.Results show that combustion temperature increases while the temperature gradient decreases with the increase in porosity,yielding higher NO_(x),and lower CO emissions.Furthermore,the combustion temperature is the lowest and most uniformly distributed with 1 m/s and 3 m/s gas velocities,wherewith 3 m/s gas velocity,combustion occurs outside of the porous zone.The corresponding NO_(x)and CO emissions are the lowest with 1 m/s gas velocity and increase with the increase in gas velocity from 1 m/s to 10m/s.展开更多
The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The example...The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The examples show that both accuracy and stability are better than Runge-Kutta method with four-order. The coefficients of the equation are stored with sparse matrix pattern, so an algorithm is presented which combines a compact storage scheme with reduced computation cost. The computation of the competitive and consecutive reaction in the rotating packed bed, taken as examples, shows that the method is effective.展开更多
In order to meet the increasingly stringent requirements for nitrogen oxides(NOx)emissions from gas boilers,flue gas recirculation(FGR)technology is commonly used to achieve ultra-low NOx emissions.However,under some ...In order to meet the increasingly stringent requirements for nitrogen oxides(NOx)emissions from gas boilers,flue gas recirculation(FGR)technology is commonly used to achieve ultra-low NOx emissions.However,under some ultra-low NOx combustion conditions with FGR,a surge phenomenon occurs in the boiler,which causes a flameout and should be avoided.In this study,the diffusion combustion surge of gas boiler with a rated power of 350 k W and equipped with FGR device was investigated.Pressure characteristic analysis results of the initial process of combustion surge showed that the high-frequency component of pressure is closely related to combustion stability and its change can provide reference for the occurrence of surge.Besides,the initial process of surge was analyzed by wavelet packet entropy method.Results indicated that the wavelet packet entropy of pressure signals could effectively reflect the stability of combustion in the furnace,and it could also be used to study the occurrence of surge.展开更多
基金Item Sponsored by National Natural Science Foundation(50104001)Science and Technology Tackle Key Foundation of Inner Mongolia(980307-4)
文摘The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated by using the software.The profiles of gas and air velocity,temperature of the combustion products,concentration of the components,and the shape and length of the flame during combustion have been researched.Compared with the original annular ceramic burner,the new design of the blunt one improves the mixing of the gas and the air significantly,and shortened the length of the flame.
基金Supported by the National Natural Science Foundation of China (51276002), and the Specific Research Fund for the Doctoral Program of Higher Education of China (20110001130014).
文摘This paper investigates the effects of coflow O2 level and temperature on diffusion flame of a CH4/H2 jet in hot coflow (JHC) from a burner system similar to that of Dally et al. The coflow O2 mass fraction ( Yo2 ) is varied from 3% to 80% and the temperature (Tcof) from 1200 K to 1700 K. The Eddy Dissipation Concept (EDC) model with detailed reaction mechanisms GRI-Mech 3.0 is used for all simulations. To validate the modeling, several JHC flames are predicted under the experimental conditions of Dally et al. [Proc. Combust. Inst., 29 (1), 1147-1154 (2002)] and the results obtained match well with the measurements. Results demonstrate that, when Yo2 decreased, the diffusion combustion is likely to transform from traditional combustion to MILD (Moderate or Intense Low-oxygen Dilution) combustion mode. When Tcof is higher, the temperature distribution over the whole domain trends to be more uniform. Reducing yo2 or Tcof leads to less production of intermediate species OH and CO. It is worth noting that if Yo2 is high enough ( Yo2 〉80%), increasing Yo2 does not cause obvious temperature increase.
文摘The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group(RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation(EDS),probability density function(PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.
文摘MgSiN2 powders have been synthesized by combustion synthesis (CS) using Mg and Si3N4 as starting materials at different nitrogen pressures. The CSed powders were then sintered by spark plasma sintering (SPS) to obtain dense bulk MgSiN2 product. Analysis of the CSed powder using X-ray diffraction (XRD) revealed single-phase MgSiN2 was obtained by CS method. However, the CSed product can be divided into three distinct parts according to its color. Scanning electron microscopy (SEM) observation revealed the grain size and crystallinity decrease gradually from the center to the outer layer. Some small grains clustered together to form larger particles, and there were a large number of pores among the clusters. The grain size seemed increasing with the increase of nitrogen pressure. The bulk density of CS-SPSed MgSiN2 was 3.11 g/cm3, Vickers hardness was 1673.1 kgf/mm2, and thermal diffusivity was 8.718E−2 cm2/s.
文摘An experimental study investigated the characteristics of a stretched cylindrical diffusion flame, with a convex curvature with respect to the air stream, in response to periodic air flow velocity oscillation. The fuel was methane diluted with nitrogen, and the oxidizer air. The oscillation frequency was varied from 5 to 250 Hz. The results are summarized as follows. Though the fluctuation amplitude of the air stream velocity gradient was constant with respect to the frequency, the amplitude of the fuel stream increased. The fluctuation amplitude of the flame radius changed quasi-steadily from 5 to 25 Hz, and decreased with increasing frequency in the frequency range greater than 50 Hz. The flame luminosity did not respond quasi-steadily at 5 Hz, and the oscillation amplitude of flame luminosity was less than that of a steady flame, over the same velocity fluctuation range. The oscillation amplitude of luminosity peaked at 50 Hz, and was greater than that of a steady flame. It is considered that this complex change in flame luminosity with respect to frequency was closely related to the phase difference in the respective time variations in the ratio of flame thickness to radius, the velocity gradients of the air and fuel streams, and the magnitude of these values, with the ratio of flame thickness to radius related to the flame curvature effect, the velocity gradient of the air stream correlated to the flame stretch effect, and the velocity gradient of the fuel stream impacting the fuel transportation.
文摘In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51176059, 51025622, 51021065)
文摘Based on a detailed chemical mechanism, impacts of combustion characteristics and flame structure on soot formation in opposed-flow diffusion ethylene flames was studied with different stoichiometric mixture fractions in O2/N2and O2/CO2atmospheres. The results showed the followings. 1) In both atmospheres, with the increase of stoichiometric mixture fraction, the flame structure changed significantly. The stagnation plane shifted toward the oxidizer side. Furthermore, there were less C2H2 but more O and OH to occur in the soot inception zone, therefore the amount of soot in the flame decreased. 2) Compared withN2, CO2had a suppression effect on soot formation, which was mainly due to thermal and direct chemical interaction effects of CO2. This is because the specific heat capacity of CO2is higher than that of N2, which will cause the flame temperature to drop,and mole fractions of C2H2, H, O, OH and main PAHs to decrease. Soot oxidation played a dominant role, while soot surface growth was attributed to the secondary position. Meanwhile, when CO2 abounded in the flame, OH concentration was increased through the backward reaction of CO+OH=CO2+H, and this would be conducive to the oxidation of soot precursor and incipient soot particles. In addition, the results of maximum particle density indicated the thermal effect of CO2on soot for-mation is more important than the direct chemical interaction effect.
文摘Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on temperature distribution and CO and NO_(x)emissions.Reduced chemical kinetics was used where air and methane were assumed to be at their stoichiometric ratio,while thermo-physical properties were varied per the solid matrix porosity variation.Combustion characteristics were evaluated based on conduction and radiation as the two primary heat transfer modes within the solid matrix.Numerical simulations were carried out based on a packed bed with 3 mm alumina pellets.Results show that combustion temperature increases while the temperature gradient decreases with the increase in porosity,yielding higher NO_(x),and lower CO emissions.Furthermore,the combustion temperature is the lowest and most uniformly distributed with 1 m/s and 3 m/s gas velocities,wherewith 3 m/s gas velocity,combustion occurs outside of the porous zone.The corresponding NO_(x)and CO emissions are the lowest with 1 m/s gas velocity and increase with the increase in gas velocity from 1 m/s to 10m/s.
文摘The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The examples show that both accuracy and stability are better than Runge-Kutta method with four-order. The coefficients of the equation are stored with sparse matrix pattern, so an algorithm is presented which combines a compact storage scheme with reduced computation cost. The computation of the competitive and consecutive reaction in the rotating packed bed, taken as examples, shows that the method is effective.
基金supported by the National Natural Science Foundation of China(51976140)the National Key Research and Development Program of China(2017YFF0209801)。
文摘In order to meet the increasingly stringent requirements for nitrogen oxides(NOx)emissions from gas boilers,flue gas recirculation(FGR)technology is commonly used to achieve ultra-low NOx emissions.However,under some ultra-low NOx combustion conditions with FGR,a surge phenomenon occurs in the boiler,which causes a flameout and should be avoided.In this study,the diffusion combustion surge of gas boiler with a rated power of 350 k W and equipped with FGR device was investigated.Pressure characteristic analysis results of the initial process of combustion surge showed that the high-frequency component of pressure is closely related to combustion stability and its change can provide reference for the occurrence of surge.Besides,the initial process of surge was analyzed by wavelet packet entropy method.Results indicated that the wavelet packet entropy of pressure signals could effectively reflect the stability of combustion in the furnace,and it could also be used to study the occurrence of surge.