With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combine...With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.展开更多
Surface roughness plays a significant role in floatability of coal.In the present paper,coking coal surface was polished by three different sandpapers and the surface properties were characterized by contact angle and...Surface roughness plays a significant role in floatability of coal.In the present paper,coking coal surface was polished by three different sandpapers and the surface properties were characterized by contact angle and roughness measurements.The effect of surface roughness on floatability was investigated by adhesion force measurement system for measuring interaction forces between droplets/bubbles and coking coal surfaces with different roughness.The results showed that the contact angle decreased with increasing roughness yet the adhesion force between the water droplet and coal surface increased owing to the increased contact line and the appearance of line pinning.Maximum adhesion forces between water and surfaces were 111.70,125.48,and 136.42μN when the roughness was 0.23,0.98,and 2.79 μm,respectively.In contrast,under a liquid environment,the adhesion forces between air bubble/oil droplet and coal surfaces were decreased with increasing roughness because of the restriction by water.Maximum adhesion forces of increasing roughness were 97.14,42.76,and 17.86 μN measured at interfaces between air bubble and coal surfaces and 169.48,145.84,and 121.02 lN between oil droplet and surfaces,respectively.Decreasing roughness could be beneficial to the spreading of oil droplets and the adhesion of bubbles which is conducive to flotation separation.展开更多
The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat...The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.展开更多
A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible flu...A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.展开更多
The behavior of bubbles is observed with high-speed digital camera in water-model. It is found that each bubble has three processes: bubble formation, bubble coalescence and bubble division. Bubble shape is spherical ...The behavior of bubbles is observed with high-speed digital camera in water-model. It is found that each bubble has three processes: bubble formation, bubble coalescence and bubble division. Bubble shape is spherical firstly, then elliptical and spherical crown after coalescence, and spherical again after division. These phenomena are explained theoretically. And the bubble size is defined newly. The so-defined bubble size is measured through digital camera and LECO graphical analyzer. And the measured results are compared with those in literatures.展开更多
A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusio...A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H20 and 02 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption.展开更多
Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW s...Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh-Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors' opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations.展开更多
Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation r...Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation rule of xylene under different conditions such as the ORP value of the spray liquid, pH value of the spray liquid, liquid-gas ratio of the spray liquid, residence time of xylene, and initial concentration of xylene was investigated. The results showed that at a low concentration, the pH value of the spray liquid had little effect on the degradation rate of xylene. The degradation rate of xylene rose with the increase of the ORP value of the spray liquid, the liquid-gas ratio of the spray liquid, the residence time of xylene, and the initial concentration of xylene.展开更多
To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introd...To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity.展开更多
Tundish is the last refractory vessel in the steelmaking process. The fluid flow phenomena in tundish have a strong influence on the separation of non-metallic inclusions. The dispersive bubble wall (DBW) is a new m...Tundish is the last refractory vessel in the steelmaking process. The fluid flow phenomena in tundish have a strong influence on the separation of non-metallic inclusions. The dispersive bubble wall (DBW) is a new method in tundish metallurgy. A water model of a multi-strand tundish has been set up based on the Froude number and Reynold number similarity criteria. The effect of DBW+weir on the flow pattern has been studied. The results show that this new structure of DBW+weir is beneficial not only to uniform the temperature among different submerge entry nozzles but also to separate non-metallic inclusions from liquid steel. The DBW can capture the particles of non-metallic inclusions and make them float up to the surface.展开更多
The flow properties of fine bubble mixture flows are investigated and reported. Few previous studies have focused on ultra-fine bubble (UFB) mixtures, which contain sub-micrometer sized bubbles. In this study, UFB mix...The flow properties of fine bubble mixture flows are investigated and reported. Few previous studies have focused on ultra-fine bubble (UFB) mixtures, which contain sub-micrometer sized bubbles. In this study, UFB mixtures of water and glycerol solution are passed through micro-sized slits and capillaries, and the resultant pressure drops are evaluated in comparison with those for water and aqueous glycerol alone. The experimentally measured pressure drop for slits (≤51 μm) and capillaries (≤81 μm) is less for UFB mixtures than for water and aqueous glycerol alone. This phenomenon is considered in terms of interface behavior and attributed to the electric interaction between an electric double layer and the UFBs. Furthermore, numerical observation for slip wall conditions is conducted, and the results for UFB mixtures agree with the predicted values for slip wall conditions.展开更多
The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes o...The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.展开更多
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w...An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.展开更多
The motivation to calculate this empirical model resulted from often observing—at the time disconcerting—excess dinitrogen gas (N2 concentration > background concentration) in bubble-gas emission samples, collect...The motivation to calculate this empirical model resulted from often observing—at the time disconcerting—excess dinitrogen gas (N2 concentration > background concentration) in bubble-gas emission samples, collected primarily for the purpose of carbon budget research, from Brazilian rivers and reservoirs sampled during roughly 100 field surveys lasting 4 days each on average and executed between years 2000 and 2012. We model the (serendipitously) measured dinitrogen gas above environmental concentration (N2aec) escaping in bubbles from Brazilian rivers as a function of dissolved nitrogen (N) in water. To this model, we mathematically add a pre-existing model of diffusively emitted denitrified dinitrogen (also as a function of dissolved N) from streams in the United States of America (USA). The resulting model predicts denitrified dinitrogen water-air emission from inland waters in the USA, China and Germany.展开更多
Experiments were carried out to find the effects of dissolved gas pressure,liquid flow rateand nozzle geometry on the bubble generation when saturated water was depressurized through anozzle.A new method,high speed ca...Experiments were carried out to find the effects of dissolved gas pressure,liquid flow rateand nozzle geometry on the bubble generation when saturated water was depressurized through anozzle.A new method,high speed camera system was developed to measure the generated microbubblesdynamically.On the basis of the laws of ideal gas and solution,theoretical generated gas flow ratewas deduced,while the Smoluchowski′s equation was applied to describe the kinetics of bubblenucleation.It was found that the size distribution of nucleated bubbles was of skewed distribution.An explanation to this phenomenon was made and the Gamma function distribution was employedfor mathematical simulation.The results show good agreement between the experimental data and thepredictions by proposed model.展开更多
When high voltage is applied to distilled water filled into two beakers close to each other, a watery connection forms spontaneously, giving the impression of a floating water bridge [1-8]. In this work we present the...When high voltage is applied to distilled water filled into two beakers close to each other, a watery connection forms spontaneously, giving the impression of a floating water bridge [1-8]. In this work we present the first inelastic ultraviolet scattering data of such an electrohydrodynamic bridge revealing radial gradients of Stokes- and Anti-Stokes shifts and their intensity profiles. Interpretations including density and temperature changes within the bridge are discussed. The obtained data can be satisfactorily explained by the introduction of a second phase consisting of nano bubbles. Results and interpretation are discussed in relation to similar phenomena.展开更多
基金Supported by Research Foundation Ability Enhancement Project for Young and Middle-aged Teachers in Guangxi Universities(2023KY2049).
文摘With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.
基金This work was supported by the Jiangsu Natural Science Fund-Youth Fund(BK20190639)National Nature Science Foundation of China(Nos.21978318,51904300,and 51922106)National Key R&D Program of China(2020YFC1908803).
文摘Surface roughness plays a significant role in floatability of coal.In the present paper,coking coal surface was polished by three different sandpapers and the surface properties were characterized by contact angle and roughness measurements.The effect of surface roughness on floatability was investigated by adhesion force measurement system for measuring interaction forces between droplets/bubbles and coking coal surfaces with different roughness.The results showed that the contact angle decreased with increasing roughness yet the adhesion force between the water droplet and coal surface increased owing to the increased contact line and the appearance of line pinning.Maximum adhesion forces between water and surfaces were 111.70,125.48,and 136.42μN when the roughness was 0.23,0.98,and 2.79 μm,respectively.In contrast,under a liquid environment,the adhesion forces between air bubble/oil droplet and coal surfaces were decreased with increasing roughness because of the restriction by water.Maximum adhesion forces of increasing roughness were 97.14,42.76,and 17.86 μN measured at interfaces between air bubble and coal surfaces and 169.48,145.84,and 121.02 lN between oil droplet and surfaces,respectively.Decreasing roughness could be beneficial to the spreading of oil droplets and the adhesion of bubbles which is conducive to flotation separation.
基金Project(2011-0021376) supported by Basic Science Program through the National Research Foundation (NRF) Funded by the Ministry of Education,Science and Technology of Korea
文摘The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.
基金the National Natural Science Foundation of China (No.50074035).
文摘A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.
文摘The behavior of bubbles is observed with high-speed digital camera in water-model. It is found that each bubble has three processes: bubble formation, bubble coalescence and bubble division. Bubble shape is spherical firstly, then elliptical and spherical crown after coalescence, and spherical again after division. These phenomena are explained theoretically. And the bubble size is defined newly. The so-defined bubble size is measured through digital camera and LECO graphical analyzer. And the measured results are compared with those in literatures.
基金supported partially by Japan Society for the Promotion of Science(JSPS)KAKENHI(No.26249015)
文摘A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H20 and 02 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174145 and 11334005)
文摘Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh-Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors' opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations.
基金Supported by Guigang City Science Research and Technology Development Plan Project(GUIKEJI2203014).
文摘Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation rule of xylene under different conditions such as the ORP value of the spray liquid, pH value of the spray liquid, liquid-gas ratio of the spray liquid, residence time of xylene, and initial concentration of xylene was investigated. The results showed that at a low concentration, the pH value of the spray liquid had little effect on the degradation rate of xylene. The degradation rate of xylene rose with the increase of the ORP value of the spray liquid, the liquid-gas ratio of the spray liquid, the residence time of xylene, and the initial concentration of xylene.
基金supported by the National Natural Science Foundation of China(No.51474213)the National Natural Science Foundation of China(No.51374205)+1 种基金the Fundamental Research Funds for the Central Universities(No.2014XT05)A Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity.
基金This work is financially supported by the National Natural Science Foundation of China (No. 50274007).
文摘Tundish is the last refractory vessel in the steelmaking process. The fluid flow phenomena in tundish have a strong influence on the separation of non-metallic inclusions. The dispersive bubble wall (DBW) is a new method in tundish metallurgy. A water model of a multi-strand tundish has been set up based on the Froude number and Reynold number similarity criteria. The effect of DBW+weir on the flow pattern has been studied. The results show that this new structure of DBW+weir is beneficial not only to uniform the temperature among different submerge entry nozzles but also to separate non-metallic inclusions from liquid steel. The DBW can capture the particles of non-metallic inclusions and make them float up to the surface.
文摘The flow properties of fine bubble mixture flows are investigated and reported. Few previous studies have focused on ultra-fine bubble (UFB) mixtures, which contain sub-micrometer sized bubbles. In this study, UFB mixtures of water and glycerol solution are passed through micro-sized slits and capillaries, and the resultant pressure drops are evaluated in comparison with those for water and aqueous glycerol alone. The experimentally measured pressure drop for slits (≤51 μm) and capillaries (≤81 μm) is less for UFB mixtures than for water and aqueous glycerol alone. This phenomenon is considered in terms of interface behavior and attributed to the electric interaction between an electric double layer and the UFBs. Furthermore, numerical observation for slip wall conditions is conducted, and the results for UFB mixtures agree with the predicted values for slip wall conditions.
基金Supported by the National Natural Science Foundation of China(Grant No.59995460)
文摘The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.
基金financial support from the National Key R&D Program(2023YFE0108000)the Academy of Sciences Project of Guangdong Province(2019GDASYL-0102007,2021GDASYL-20210103063)+1 种基金GDAS’Project of Science and Technology Development(2022GDASZH-2022010203-003)financial support from the China Scholarship Council(202108210128)。
文摘An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.
文摘The motivation to calculate this empirical model resulted from often observing—at the time disconcerting—excess dinitrogen gas (N2 concentration > background concentration) in bubble-gas emission samples, collected primarily for the purpose of carbon budget research, from Brazilian rivers and reservoirs sampled during roughly 100 field surveys lasting 4 days each on average and executed between years 2000 and 2012. We model the (serendipitously) measured dinitrogen gas above environmental concentration (N2aec) escaping in bubbles from Brazilian rivers as a function of dissolved nitrogen (N) in water. To this model, we mathematically add a pre-existing model of diffusively emitted denitrified dinitrogen (also as a function of dissolved N) from streams in the United States of America (USA). The resulting model predicts denitrified dinitrogen water-air emission from inland waters in the USA, China and Germany.
文摘Experiments were carried out to find the effects of dissolved gas pressure,liquid flow rateand nozzle geometry on the bubble generation when saturated water was depressurized through anozzle.A new method,high speed camera system was developed to measure the generated microbubblesdynamically.On the basis of the laws of ideal gas and solution,theoretical generated gas flow ratewas deduced,while the Smoluchowski′s equation was applied to describe the kinetics of bubblenucleation.It was found that the size distribution of nucleated bubbles was of skewed distribution.An explanation to this phenomenon was made and the Gamma function distribution was employedfor mathematical simulation.The results show good agreement between the experimental data and thepredictions by proposed model.
文摘When high voltage is applied to distilled water filled into two beakers close to each other, a watery connection forms spontaneously, giving the impression of a floating water bridge [1-8]. In this work we present the first inelastic ultraviolet scattering data of such an electrohydrodynamic bridge revealing radial gradients of Stokes- and Anti-Stokes shifts and their intensity profiles. Interpretations including density and temperature changes within the bridge are discussed. The obtained data can be satisfactorily explained by the introduction of a second phase consisting of nano bubbles. Results and interpretation are discussed in relation to similar phenomena.