期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Recent progress on fabrication, spectroscopy properties, and device applications in Sn-doped CdS micro-nano structures
1
作者 Bo Cao Ye Tian +8 位作者 Huan Fei Wen Hao Guo Xiaoyu Wu Liangjie Li Zhenrong Zhang Lai Liu Qiang Zhu Jun Tang Jun Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第9期7-27,共21页
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ... One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development. 展开更多
关键词 Sn-doped CdS micro-nano structure SUPERLATTICES optical microcavity
下载PDF
Superamphiphobic, light-trapping FeSe2 particles with a micro-nano hierarchical structure obtained by an improved solvothermal method 被引量:1
2
作者 郁菁 王会杰 +1 位作者 邵伟佳 许小亮 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期336-340,共5页
Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl... Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl ammonium bromide (CTAB) is employed as a surfactant. After modifying the particles with heptadecafluorodecyltrimethoxy-silane (HTMS), we find that the water contact angle (WCA) of the FeSe2 particles increases by 6.1~ and the water sliding angle (WSA) decreases by 2.5~ respectively, and the diffuse reflectivity decreases 29.4% compared with similar FeSe2 particles synthe- sized by the conventional method. The growth process of the particles is analyzed and a growth scenario is given. Upon altering the PH values of the water, we observe that the superhydrophobic property is maintained quite consistently across a wide PH range of 1-14. Moreover, the modified particles were also found to be superoleophobic. To the best of our knowledge, there is no systematic research on the wettability of FeSe2 particles, so our research provides a reference for other researchers. 展开更多
关键词 FeSe2 SUPERHYDROPHOBIC micro-nano hierarchical structure light-trapping
下载PDF
Investigation on Surface Plasmon Polaritons and Localized Surface Plasmon Production Mechanism in Micro-Nano Structures 被引量:1
3
作者 Ling-Xi Hu Min Hu Sheng-Gang Liu 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期20-29,共10页
The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr... The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature. 展开更多
关键词 Coherent radiation high-power radiation localized surface plasmon(LSP) micro-nano structure Smith-Purcell radiation surface plasmon polaritons(SPPs)
下载PDF
Potential application of functional micro-nano structures in petroleum
4
作者 LIU He JIN Xu +2 位作者 ZHOU Dekai YANG Qinghai LI Longqiu 《Petroleum Exploration and Development》 2018年第4期745-753,共9页
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d... This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining. 展开更多
关键词 PETROLEUM industry micro-nano structures micro-nano motor METAMATERIALS 3D PRINTING application direction OIL production engineering OIL equipment enhanced OIL recovery
下载PDF
Synthesis and electrochemical performance of micro-nano structured Li Fe1-xMnxPO4/C(0≤x≤0.05)cathode for lithium-ion batteries
5
作者 Chunyang Li Guojun Li Xiaomei Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期923-929,共7页
Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0... Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping. 展开更多
关键词 Li Fe1-xMnxPO4/C Spray drying Electrochemical property micro-nano structure
下载PDF
Generalized model for laser-induced surface structure in metallic glass 被引量:1
6
作者 叶林茂 武振伟 +2 位作者 刘凯欣 汤秀章 熊向明 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期557-562,共6页
The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are in... The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated.We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid.A generalized model is presented to describe the special morphology,which fits the experimental result well.It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples.The greater the viscosity is,the shorter the amplitude and the wavelength are. 展开更多
关键词 metallic glasses pulse laser processing micro-nano scale surface structure VISCOSITY
下载PDF
Reservoir micro structure of Da'anzhai Member of Jurassic and its petroleum significance in Central Sichuan Basin, SW China
7
作者 PANG Zhenglian TAO Shizhen +6 位作者 ZHANG Qin YANG Jiajing ZHANG Tianshu YANG Xiaoping FAN Jianwei HUANG Dong WEI Tengqiang 《Petroleum Exploration and Development》 2018年第1期68-78,共11页
Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESE... Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESEM)and quantitative examination of pore size and geometry using mercury injection,nano-CT and nitrogen adsorption,reservoir rock of Da’anzhai Member were divided into 9 types,while storage spaces were divided into 4 types and 14 sub-types.The study shows that sparry coquina is the most promising reservoir type.Pores that smaller than 1μm in diameter contribute 91.27%of storage space volume.Most of them exhibit slot-like geometry with good connectivity.By building up storage space models,it was revealed that micron scale storage spaces mainly composed of fractures and nanometer scale pores and fractures form multi-scale dual porosity system.Low resource abundance,small single well controlled reserve,and low production are related to the nano-scale pore space in Da’anzhai Memer,whereas the dual-porosity system composed of pores and fractures makes for long-term oil yield.Due to the existence of abundant slot-like pore space and fractures,economic tight oil production was achieved without stimulations. 展开更多
关键词 Central SICHUAN Basin Da’anzhai MEMBER coquina storage space structure characteristics multi-scale FRACTURES ISOTHERMAL adsorption micro-nano pore
下载PDF
Directionally tailoring micro-nano hierarchical tower structured Mn_(0.6)Ni_(1.4)Co_(2)O_(y) toward solar interfacial evaporation
8
作者 Yi Zhang Shujuan Tan +2 位作者 Tong Xu Zhuoting Zhou Guanbgin Ji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第27期21-30,共10页
Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation... Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation of water by the sun.However,the simple structure of photothermal materials are vitally restricted by finite light absorption.Herein,this work presents a strategy for the synthesis of a spinel-type micro-nano hierarchical tower structure solar absorbent(Mn_(0.6)Ni_(1.4)Co_(2)O_(y))with the low forbidden band(=1.56 eV)and high absorption(97.88%).The products show great potential in solar-thermal energy conversion by creating a trapping effect.The prepared solar absorbent and epoxy resin are evenly mixed and then fully immersed in polyurethane(PU)sponge for water evaporation.The hydrophilic and porous Mn_(0.6)Ni_(1.4)Co_(2)O_(y)@PU sponge can quickly deliver water upwards,suppress the heat loss,and concentrate the absorbed heat on the evaporation of water.The products exhibited an excellent evaporation rate of 2.261 kg m^(-2) h^(-1) and an impressive evaporation efficiency of 156%under a single sun exposure.Besides,the samples also can maintain the stability and recycling performance for a long time.These findings show that Mn_(0.6)Ni_(1.4)Co_(2)O_(y) have great application prospects in the solar interfacial evaporation. 展开更多
关键词 Solar interfacial evaporation Photothermal conversion SPINEL micro-nano hierarchical structure
原文传递
Surface Micro-Nano Structures on GaN Thin Films Induced by 355 nm Nanosecond Laser Irradiation
9
作者 Gu Yonggang Niu Jian +2 位作者 Yang Jian Dong Fang Xu Hongxing 《激光与光电子学进展》 CSCD 北大核心 2023年第7期196-202,共7页
Gallium nitride(GaN)has widespread applications in the semiconductor industry because of its desirable optoelectronic properties.The fabrication of surface structures on GaN thin films can effectively modify their opt... Gallium nitride(GaN)has widespread applications in the semiconductor industry because of its desirable optoelectronic properties.The fabrication of surface structures on GaN thin films can effectively modify their optical and electrical properties,providing additional degrees of freedom for controlling GaN-based devices.Compared with lithography-based techniques,laser processing is maskless and much more efficient.This paper shows how surface micronano structures can be produced on GaN thin films using 355 nm nanosecond laser irradiation.The effects of the laser pulse energy,number of pulses,and polarization direction were studied.It was found that distinct micro-nano structures were formed under different irradiation conditions,and their geometries and elemental compositions were analyzed.The results indicate that different types of surface micro-nano structures can be produced on GaN thin films in a controllable manner using 355 nm nanosecond laser irradiation.The results of our study provide valuable guidance for the surface modification of GaN-based optoelectronic devices. 展开更多
关键词 gallium nitride thin films nanosecond laser micro-nano structures laser-induced periodic surface structures
原文传递
ZnO micro-nano composite hydrophobic film prepared by the three-step method
10
作者 马恺 李华 +3 位作者 张晗 许小亮 公茂刚 杨周 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第5期1942-1946,共5页
The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step meth... The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties. 展开更多
关键词 three-step method ZNO micro-nano structure hydrophobic film
下载PDF
Micro-nano structured functional coatings deposited by liquid plasma spraying 被引量:6
11
作者 Yuchun HUAN Kaidi WU +3 位作者 Changjiu LI Hanlin LIAO Marc DEBLIQUY Chao ZHANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2020年第5期517-534,共18页
Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface a... Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface area,porosity,and dual-scale structure,it has recently attracted special attention.The typical fabrication processes of micro-nano structured coatings include sol-gel,hydrothermal synthesis,chemical vapor deposition,etc.This paper presents the main features of a recent deposition and synthesis technique,liquid plasma spraying(LPS).LPS is an important technical improvement of atmospheric plasma spraying.Compared with atmospheric plasma spraying,LPS is more suitable for preparing functional coatings with micro-nano structure.Micro-nano structured coatings are mainly classified into hierarchical-structure and binary-structure.The present study reviews the preparation technology,structural characteristics,functional properties,and potential applications of LPS coatings with a micro-nano structure.The micro-nano structured coatings obtained through tailoring the structure will present excellent performances. 展开更多
关键词 liquid plasma spraying(LPS) composite spraying micro-nano structure functional coatings
原文传递
Flexible Triboelectric Nanogenerator from Micro-nano Structured Polydimethylsiloxane 被引量:3
12
作者 XIAO Xinze Lü Chao +3 位作者 WANG Gong XU Ying WANG Jiping YANG Hai 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2015年第3期434-438,共5页
Triboelectric nanogenerator(TENG) can convert mechanical energy to electrical energy through contact electrification and electrostatic induction. Single-friction-surface triboelectric nanogenerator(STENG) extends ... Triboelectric nanogenerator(TENG) can convert mechanical energy to electrical energy through contact electrification and electrostatic induction. Single-friction-surface triboelectric nanogenerator(STENG) extends poten- tial application because a finger can be used as one friction surface in the contact electrification. In this work, a fully flexible STENG has been made, consisting of polydimethylsiloxane(PDMS) with micro-nano structures on its ob- serve side and a flexible electrode on its reverse side. The femtosecond laser ablation was introduced to make micro-nano structures on PDMS and Ag nanowires(Ag NWs) were embedded in PDMS to serve as flexible induction electrode. It has been demonstrated that the energy conversion efficiency increases greatly because of the existing micro-nano structures on PDMS. Further, the mechanism of STENG was proved. Owing to the fully flexible charac- teristics in both the electrode and PDMS, STENG works well when it is adhered on any subject, for example, on clothes by tape. 展开更多
关键词 Flexible triboelectric nanogenerator Femtosecond laser micro-nano structured polydimethylsiloxane Silver nanowire
原文传递
Structure induced wide range wettability:Controlled surface of micro-nano/nano structured copper films for enhanced interface 被引量:1
13
作者 Lili Cao Bingwei Luo +3 位作者 Hongli Gao Min Miao Tao Wang Yuan Deng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期147-158,共12页
The wettability of materials used in the production of devices employed in various technological domains have attracted significant attentions.Therefore,it is important to design the surfaces of these materials such t... The wettability of materials used in the production of devices employed in various technological domains have attracted significant attentions.Therefore,it is important to design the surfaces of these materials such that they can provide the required surface free energy and simplify the interfacial structure.Herein,various Cu films with a highly controllable surface wettability and a wide range of contact angles ranging from 6°to 152°were fabricated,and the corresponding mechanism was discussed.A wide range of wettability was realized by controlling the surface structure of the Cu film.The nanogap structure of the vertical nanowire-array film led to a high surface free energy.Similarly,the oblique nanowirearray film increased the surface free energy;however,the surface free energy was dependent on the size of the nanowires rather than on the nanogaps owing to the crystallinity of the film.Additionally,cluster-nanowire-array films were designed to realize a wettability transition from hydrophilicity to hydrophobicity with a constant surface free energy.The Cu foam possessed a superhydrophilic surface owing to its high porosity,whereas the cluster-nanoparticle structure possessed a superhydrophobic surface.In addition,we noted that the structure-induced wettability played an important role in tuning the semiconductor and metal interfacial stress and simplifying the interfacial structure.Furthermore,the outstanding electrical conductivity of the Cu films indicates its promising potential as an electrode.The structure-induced wettability proposed in this study can be applied for a wide range of materials,particularly for films used for advanced applications. 展开更多
关键词 WETTABILITY COPPER FILM micro-nano structure INTERFACE
原文传递
Osteogenic and antibacterial ability of micro-nano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing 被引量:1
14
作者 Yi Wan Zihe Zhao +5 位作者 Mingzhi Yu Zhenbing Ji Teng Wang Yukui Cai Chao Liu Zhanqiang Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第36期240-252,共13页
The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegrati... The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegration ability and antibacterial capacity.In this study,we prepared a multi-scale composite structure coated with zinc oxide(ZnO)on Ti-6Al-4V implant by an innovative technology of two-step laser processing combined with solution-assistant.Compared with the acid etching method,the physicochemical properties of surface significantly improved.The in vitro results showed that the particular dimension of micro-nano structure and the multifaceted nature of ZnO synergistically affected MC3T3-E1 osteogenesis and bacterial activities:(1)The surface morphology showed a‘contact guidance'effect on cell arrangement,which was conducive to the adhesion of filopodia and cell spreading,and the osteogenesis level of MC3T3-E1 was enhanced due to the release of zinc ions(Zn^(2+));(2)the characterization of bacterial response revealed that periodic nanostructures and Zn^(2+)released could cause damage to the cell wall of E.coli and reduce the adhesion and aggregation of S.aureus.In conclusion,the modified surface showed a synergistic effect of physical topography and chemical composition,making this a promising method and providing new insight into bone defect repairment. 展开更多
关键词 Ti-6Al-4V implant Laser processing micro-nano structure Zinc oxide Osseointegration ability Antibacterial capacity
原文传递
Micro-nano structured VNb_(9)O_(25)anode with superior electronic conductivity for high-rate and long-life lithium storage
15
作者 Mingxing Liang Yongcong Huang +7 位作者 Yuda Lin Guisheng Liang Cihui Huang Lan Chen Jiaxin Li Qian Feng Chunfu Lin Zhigao Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第24期66-74,共9页
The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb_(9)O_(25)composites with rich oxygen v... The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb_(9)O_(25)composites with rich oxygen vacancies were reasonably prepared via a facile solvothermal method combined with annealing treatment at 800℃for 30 h(VNb_(9)O_(25)-30 h).This micro-nano structure can enhance the contact of active material/electrolyte,and shorten the Li+diffusion distance.The introduction of oxygen vacancies can further boosts the intrinsic conductivity of VNb_(9)O_(25)-30 h for achieving excellent LIB performance.The as-prepared VNb_(9)O_(25)-30 h anode showed advanced rate capability with reversible capacity of 122.2 m A h g^(-1)at 4 A g^(-1),and delivered excellent capacity retention of~100%after 2000 cycles.Meanwhile,VNb_(9)O_(25)-30 h provides unexpected long-cycle life(i.e.,reversible capacity of 165.7 m A h g^(-1)at 1 A g^(-1)with a high capacity retention of 85.6%even after 8000 cycles).Additionally,coupled with the Li Fe PO4 cathode,the Li Fe PO4//VNb_(9)O_(25)-30 h full cell delivers superior LIB properties with high reversible capacities of 91.6 m A h g^(-1)at 5 C for 1000 cycles.Thus,such reasonable construction method can assist in other high-performance niobium-based oxides in LIBs. 展开更多
关键词 Lithium-ion batteries VNb_(9)O_(25)anode micro-nano structure Oxygen vacancies Electrochemical performance
原文传递
Biomimetic Photonic Structures with Tunable Structural Colours: From Natural to Biomimetic to Applications 被引量:6
16
作者 Zelinlan Wang Zhiguang Guo 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第1期1-33,共33页
Natural photonic structure with tunable structural colours is one of the most miraculous structures which always catches our eyes. However, the application of artificial photonic structures is limited. Moreover, becau... Natural photonic structure with tunable structural colours is one of the most miraculous structures which always catches our eyes. However, the application of artificial photonic structures is limited. Moreover, because of the ability of tunable colours, photonic structure is the excellent candidate for many fields, such as sensor, bioassay, anti-counterfeiting, optical components, photocatalytic, fibers and fabrics. Considering the superior tunable optical property and other excellent performance such as robust mechanical strength, wettability, there are new domains and novel routes for this material that deserve us to explore. In this review, some natural photonic structures are discussed. Some novel fabrication methods and applications will be mentioned in this article. Furthermore, this review provides an insight and outlook for the photonic material with tunable eolours focusing on fabrication, design and applications. 展开更多
关键词 biomimetic material structural colours photonic structure tunable structural colours micro-nano structures
原文传递
新型陶瓷基复合超疏水涂层的制备及其性能 被引量:2
17
作者 高硕洪 刘敏 +1 位作者 张小锋 邓春明 《材料导报》 EI CAS CSCD 北大核心 2018年第20期3510-3516,3523,共8页
为了研究开发新型超疏水涂层的制备方法,改善涂层的结构与性能,以Al_2O_3-40%TiO_2(AT40)、PFA(全氟烷氧基乙烯基醚共聚物)粉末为原始材料,采用大气等离子喷涂(APS)技术,并调整电流、氩气流量等喷涂参数,在铝合金基体表面制备了两种不同... 为了研究开发新型超疏水涂层的制备方法,改善涂层的结构与性能,以Al_2O_3-40%TiO_2(AT40)、PFA(全氟烷氧基乙烯基醚共聚物)粉末为原始材料,采用大气等离子喷涂(APS)技术,并调整电流、氩气流量等喷涂参数,在铝合金基体表面制备了两种不同的AT40/PFA复合超疏水涂层。利用相对应的测试仪器及分析手段对喷涂态涂层的相组成、显微结构、摩擦系数及基本性能等进行了表征分析。结果表明,两种涂层的相组成均为C_(20)F_(42)、Al_2TiO_5及少量的γ-Al_2O_3、α-Al_2O_3相;涂层表面均为圆形和椭圆形的粒状突起结构,其中突起结构的表面均存在类似荷叶表面结构的二元微纳米乳突结构,其表面粗糙度为9.3μm和12.41μm;所得涂层具有良好的综合性能,与水的静态接触角均达到了150°以上,滚动角为4~5°;在其他参数不变的情况下,随着电流的增大及氩气流量的减小,涂层中的陶瓷相含量增加,涂层的粗糙度、摩擦系数、显微硬度及结合强度均增大。 展开更多
关键词 陶瓷基复合材料 超疏水涂层 大气等离子喷涂 疏水性能 微纳米乳突结构
下载PDF
Fabrication of diamond ultra-fine structures by femtosecond laser 被引量:4
18
作者 姜瞳 高斯 +2 位作者 田振男 张汉壮 牛立刚 《Chinese Optics Letters》 SCIE EI CAS CSCD 2020年第10期38-42,共5页
A 400 nm femtosecond laser was used to ablate the surface of a high-pressure and high-temperature diamond,and subwavelength surface micro structures with a period of 100 nm were achieved. A variety of micro-nano compo... A 400 nm femtosecond laser was used to ablate the surface of a high-pressure and high-temperature diamond,and subwavelength surface micro structures with a period of 100 nm were achieved. A variety of micro-nano composite surface structures were prepared by changing the polarization direction and laser scanning direction.By dynamically adjusting the laser polarization and the laser scanning tracks, a maskless direct writing fabrication of micro-nano complex structures was realized. The micro-nano patterning on an ultra-hard and super-stabile diamond provides a new idea for the preparation of friction reducing surfaces, nano imprint transfer templates, surface enhanced Raman scattering test substrates, and micro-nano optical structures. 展开更多
关键词 femntosecond laser DIAMOND micro-nano structure
原文传递
Bioinspired Functional Surfaces for Medical Devices 被引量:1
19
作者 Liwen Zhang Guang Liu +3 位作者 Yurun Guo Yan Wang Deyuan Zhang Huawei Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期37-50,共14页
Medical devices are a major component of precision medicine and play a key role in medical treatment,particularly with the rapid development of minimally invasive surgery and wearable devices.Their tissue contact prop... Medical devices are a major component of precision medicine and play a key role in medical treatment,particularly with the rapid development of minimally invasive surgery and wearable devices.Their tissue contact properties strongly affect device performance and patient health(e.g.,heat coagulation and slipperiness on surgical graspers).However,the design and optimization of these device surfaces are still indistinct and have no supporting principles.Under such conditions,natural surfaces with various unique functions can provide solutions.This review summarizes the current progress in natural functional surfaces for medical devices,including ultra-slipperiness and strong wet attachment.The underlying mechanisms of these surfaces are attributed to their coupling effects and featured micronano structures.Depending on various medical requirements,adaptable designs and fabrication methods have been developed.Additionally,various medical device surfaces have been validated to achieve enhanced contact properties.Based on these studies,a more promising future for medical devices can be achieved for enhanced precision medicine and human health. 展开更多
关键词 Bioinspired functional surfaces Medical devices Wet attachment Interfacial liquid micro-nano structures Wearable devices
下载PDF
Transition metal carbonate anodes for Li-ion battery: fundamentals,synthesis and modification 被引量:1
20
作者 Rui Zhang Qingfeng Fu +6 位作者 Peng Gao Wang Zhou Hui Liu Chaohe Xu Jian-Fang Wu Chuanjun Tu Jilei Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期95-120,I0004,共27页
Even though transition metal carbonates(TMCs, TM = Fe, Mn, Co, Ni etc.), show high theoretical capacities, rich reserves and environmental friendliness as anodes for lithium-ion batteries(LIBs), they suffer from slugg... Even though transition metal carbonates(TMCs, TM = Fe, Mn, Co, Ni etc.), show high theoretical capacities, rich reserves and environmental friendliness as anodes for lithium-ion batteries(LIBs), they suffer from sluggish electronic/ionic conductivities and huge volume variation, which severely deteriorate the rate capacities and cycling performances. Understanding the intrinsic reaction mechanism and further developing ideal TMC-based anode with high specific capacity, excellent rate capabilities, and longterm cycling stability are critical for the practical application of TMCs. In this review, we firstly focus on the fundamental electrochemical energy-storage mechanisms of TMCs, in terms of conversionreaction process, pseudocapacitance-type charge storage, valence change for charge storage and catalytic conversion mechanisms. Based on the reaction mechanisms, various modification strategies to improve the electrochemical performance of TMCs are summarized, covering:(i) micro-nano structural engineering, in which the influence factors on the morphology are discussed, and multiple architectures are listed;(ii) elemental doping, in which the intrinsic mechanisms of metal/nonmetal elements doping on the electrochemical performance are deeply explored;(iii) multifunctional compositing strategies, in which the specific affections on structure, electronic conductivity and chemo-mechanical stability are summarized.Finally, the key challenges and opportunities to develop high-performance TMCs are discussed and some solutions are also proposed. This timely review sheds light on the path towards achieving cost-effective and safe LIBs with high energy density and long cycling life using TMCs-based anode materials. 展开更多
关键词 Transition metal carbonates Electrochemical reaction mechanism micro-nano structure engineering Elemental doping Multifunctional compositing
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部