The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between...Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.展开更多
Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or...Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.展开更多
This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with high...This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.展开更多
Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficul...Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficult to achieve systemichemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operationcapability over the whole body.Here,we utilize a soft microfiber Bragg grating group to monitor spatiotemporalhemodynamics by taking advantage of the high sensitivity,electromagnetic immunity,and great temporal synchronizationbetween multiple remote sensor nodes.A continuous systemic hemodynamic measurement technique is developedusing all-mechanical physiological signals,such as ballistocardiogram signals and pulse waves,to illustrate the actualmechanical process of blood circulation.Multiple hemodynamic parameters,such as systemic pulse transit time,heartrate,blood pressure,and peripheral resistance,are monitored using skin-like microfiber Bragg grating patches conformallyattached at different body locations.Relying on the soft microfiber Bragg grating group,the spatiotemporal hemodynamicmonitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.展开更多
Sensors play an important role in shaping and monitoring human health.Exploration of methods to use Fiber Bragg Grating(FBG)with enhanced sensitivity has attracted great interest in the field of medical research.In th...Sensors play an important role in shaping and monitoring human health.Exploration of methods to use Fiber Bragg Grating(FBG)with enhanced sensitivity has attracted great interest in the field of medical research.In this paper,a novel apodization function is proposed and performance evaluation and optimization of the same have been made.A comparison was conducted between various existing apodization functions and the proposed one based on optical characteristics and sensor parameters.The results evince the implementation of the proposed apodization function for vital sign measurement.The optical characteristics considered for evaluation are Peak Resonance Reflectivity level,Side Lobes Reflectivity level and FullWidth HalfMaximum(FWHM).The proposed novel apodization novel function has better FWHM,which is narrower than the FWHM of uniform FBG.Sensor characteristics like a quality parameter,detection accuracy and sensitivity also show improvement.The proposed novel apodization function is demonstrated to have a better shift in wavelength in terms of temperature and pulse measurement than the existing functions.The sensitivity of the proposed apodized function is enhanced with a Poly-dimethylsiloxane coating of varying thickness,which is 6 times and 5.14 times greater than uniform Fiber Bragg grating and FBG with the proposed novel apodization function,respectively,enhancing its utilization in the field of medicine.展开更多
Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and nu...Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and numerically demonstrate the critical dispersion of chirped fiber Bragg grating(CFBG)for eliminating the TDS of laser chaos in this work.The critical dispersion,as a function of relaxation frequency and bandwidth of the optical spectrum,is found through extensive dynamics simulations.It is shown that the TDS can be eliminated when the dispersion of CFBG is above this critical dispersion.In addition,the influence of dispersive feedback light and output light from a laser is investigated.These results provide important quantitative guidance for designing chaotic semiconductor lasers without TDS.展开更多
Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the ...Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks.展开更多
Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards ...Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards due to their greatly reduced size,low weight,flexibility,and immunity to electromagnetic interference.These characteristics make FBGs suitable also for use in relation to the human body for in vivo measurements and long-term monitoring.In this study,recent developments are presented with regard to the utilization of these sensors to measure the so-called post-mortem interval(PMI).Such developments rely on numerical simulations based on the Matlab software and monitoring of the rectal temperature,which is one of the main parameters for estimating the PMI.First,the Matlab software is used to solve the Henssge equation for different ambient temperatures and for different body masses;then a Bragg grating sensors is used for post-mortem dating.The results and their accuracy are discussed.展开更多
This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are...This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are computed by taking overlap integration. Numerical results for uniform gratings, phase-shifted gratings and grating cavities as well as electro-optic tunable gratings are presented. These integrated As2S3 sidewall gratings on LiNbO3 substrate provide an approach to the design of a wide range of integrated optical devices including switches, laser cavities, modulators, sensors and tunable filters.展开更多
A modified multiwavelength actively mode-locked fiber ring laser is proposed and experimentally demonstrated. In this kind of laser, stable multiwavelengths lasing is achieved by integrating cascaded sampled fiber Bra...A modified multiwavelength actively mode-locked fiber ring laser is proposed and experimentally demonstrated. In this kind of laser, stable multiwavelengths lasing is achieved by integrating cascaded sampled fiber Bragg gratings(SFBGs) into the laser cavity. To implement actively mode-locking technique, a double-ring cavity configuration is used to assure that the cavity lengths for all wavelengths lasing are identical. Thus, simultaneous mode locking of all wavelengths has been successfully achieved by using the same mode-locking signal.展开更多
The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental ...The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.展开更多
A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV)...A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV) irradiation along the grating by varying the speed of a translation stage. The UV source used is a stable continuous intracavity frequency-doubled argonion laser. The parameters (such as length, apodization profile, average index change)of FBGs can be easily changed with this method. The total UV irradiation is kept constant in the doubleexposure process because of the precise control of the exposure time, which ensures that the apodized FBG's bandwidth can be extremely narrow. The full width at half maximum (FWHM) bandwidth of the 2-cm-long apodized FBG fabricated by this method is 0. 15 nm with a maximum reflectivity of more than 95%.展开更多
We demonstrate an intracavity self-synchronized multi-color Q-switched fiber laser using a parallel-integrated fiber Bragg grating(PI-FBG), fabricated by a femtosecond laser with a point-by-point parallel inscription ...We demonstrate an intracavity self-synchronized multi-color Q-switched fiber laser using a parallel-integrated fiber Bragg grating(PI-FBG), fabricated by a femtosecond laser with a point-by-point parallel inscription method. The multi-color Q-switched pulses can be always self-synchronized when the group delay differences between neighboring spectra range from-3.4 to 3.4 ps.The starting and evolution dynamics indicate that the saturable absorption effect of the carbon nanotube plays a dual role: synchronously triggering the startup of the pulse at successive colors by active Q-switching and spontaneously compensating to some extent the temporal walk-off of the multi-color pulses through the cross saturable absorption modulation. This work unveils the intracavity self-synchronization mechanism of the multi-color Q-switched pulses and also demonstrates the potential of PI-FBGs for the customizable generation of the synchronized multi-color pulse in a single cavity.展开更多
The impact effect of boulder within debris flow is the key factor contributing to peak impact as well as to the failure of debris flow control work. So accurate measuring and calculating the impact force of debris flo...The impact effect of boulder within debris flow is the key factor contributing to peak impact as well as to the failure of debris flow control work. So accurate measuring and calculating the impact force of debris flow can ensure the engineering design strength. However, limited to the existing laboratory conditions and piezoelectric sensor performance, it is impossible, based on the conventional measurements, to devise a computing method for expressing a reliable boulder impact force. This paper has therefore designed a new measurement device according to the method of integrating Fiber Bragg grating(FBG) and reinforced concrete composite beam(RCB) for measuring the impact force of debris flows, i.e. mounting FBG on the axially stressed steel bar in the composite beam at regular intervals to monitor the steel strain. RCB plays the role of contacting debris flow and protecting FBG sensors. Taking this new device as the experimental object, drop testing is designed for simulating and reflecting the boulder impact force. In a series of impacting tests, the relationship between the peak dynamic strain value of the steel bar and the impact force is analyzed, and based on which, an inversion model that uses the steel bar strain as the independent variable is established for calculating the boulder impact force.The experimental results show that this new inversion model can determine the impact force value and its acting position with a system error of 18.1%, which can provide an experimental foundation for measuring the impact force of boulders within the debris flow by the new FBG-based device.展开更多
The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-con...The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.展开更多
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model test...Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.展开更多
Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitori...Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thennocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10^-5-2×10^-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain.展开更多
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022)。
文摘Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011。
文摘Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.
基金the financial support from Zhuzhou Times New Material Technology Co.LtD.(Grant No.XCFDJS-2022-00004495)Chilean National Agency for Research and Development(Basal FB0008).
文摘This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.
基金supported by the National Key R&D Program of China(2021YFA1401103)the National Natural Science Foundation of China(61925502 and 51772145).
文摘Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficult to achieve systemichemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operationcapability over the whole body.Here,we utilize a soft microfiber Bragg grating group to monitor spatiotemporalhemodynamics by taking advantage of the high sensitivity,electromagnetic immunity,and great temporal synchronizationbetween multiple remote sensor nodes.A continuous systemic hemodynamic measurement technique is developedusing all-mechanical physiological signals,such as ballistocardiogram signals and pulse waves,to illustrate the actualmechanical process of blood circulation.Multiple hemodynamic parameters,such as systemic pulse transit time,heartrate,blood pressure,and peripheral resistance,are monitored using skin-like microfiber Bragg grating patches conformallyattached at different body locations.Relying on the soft microfiber Bragg grating group,the spatiotemporal hemodynamicmonitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.
基金supported in part by Universiti Malaya,and ACU UK under Project No.IF063-2021.
文摘Sensors play an important role in shaping and monitoring human health.Exploration of methods to use Fiber Bragg Grating(FBG)with enhanced sensitivity has attracted great interest in the field of medical research.In this paper,a novel apodization function is proposed and performance evaluation and optimization of the same have been made.A comparison was conducted between various existing apodization functions and the proposed one based on optical characteristics and sensor parameters.The results evince the implementation of the proposed apodization function for vital sign measurement.The optical characteristics considered for evaluation are Peak Resonance Reflectivity level,Side Lobes Reflectivity level and FullWidth HalfMaximum(FWHM).The proposed novel apodization novel function has better FWHM,which is narrower than the FWHM of uniform FBG.Sensor characteristics like a quality parameter,detection accuracy and sensitivity also show improvement.The proposed novel apodization function is demonstrated to have a better shift in wavelength in terms of temperature and pulse measurement than the existing functions.The sensitivity of the proposed apodized function is enhanced with a Poly-dimethylsiloxane coating of varying thickness,which is 6 times and 5.14 times greater than uniform Fiber Bragg grating and FBG with the proposed novel apodization function,respectively,enhancing its utilization in the field of medicine.
基金the National Natural Science Foundation of China(Grant No.62105190)the Natural Science Foundation of Shanxi Province of China(Grant No.20210302124268)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province of China(Grant No.2021L285)the Youth Researchof Shanxi University of Finance and Economics(Grant No.QN-202015)。
文摘Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and numerically demonstrate the critical dispersion of chirped fiber Bragg grating(CFBG)for eliminating the TDS of laser chaos in this work.The critical dispersion,as a function of relaxation frequency and bandwidth of the optical spectrum,is found through extensive dynamics simulations.It is shown that the TDS can be eliminated when the dispersion of CFBG is above this critical dispersion.In addition,the influence of dispersive feedback light and output light from a laser is investigated.These results provide important quantitative guidance for designing chaotic semiconductor lasers without TDS.
基金supported by the National Natural Science Foundation of China(62122057,62075136,62105217,62205221,62205222)the Basic and Applied Basic Research Foundation of Guangdong Province(2022B1515120061)Shenzhen Science and Technology Program(Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing ZDSYS20220606100405013,RCYX20200714114524139,JCYJ20200109114001806)。
文摘Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks.
文摘Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards due to their greatly reduced size,low weight,flexibility,and immunity to electromagnetic interference.These characteristics make FBGs suitable also for use in relation to the human body for in vivo measurements and long-term monitoring.In this study,recent developments are presented with regard to the utilization of these sensors to measure the so-called post-mortem interval(PMI).Such developments rely on numerical simulations based on the Matlab software and monitoring of the rectal temperature,which is one of the main parameters for estimating the PMI.First,the Matlab software is used to solve the Henssge equation for different ambient temperatures and for different body masses;then a Bragg grating sensors is used for post-mortem dating.The results and their accuracy are discussed.
文摘This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are computed by taking overlap integration. Numerical results for uniform gratings, phase-shifted gratings and grating cavities as well as electro-optic tunable gratings are presented. These integrated As2S3 sidewall gratings on LiNbO3 substrate provide an approach to the design of a wide range of integrated optical devices including switches, laser cavities, modulators, sensors and tunable filters.
文摘A modified multiwavelength actively mode-locked fiber ring laser is proposed and experimentally demonstrated. In this kind of laser, stable multiwavelengths lasing is achieved by integrating cascaded sampled fiber Bragg gratings(SFBGs) into the laser cavity. To implement actively mode-locking technique, a double-ring cavity configuration is used to assure that the cavity lengths for all wavelengths lasing are identical. Thus, simultaneous mode locking of all wavelengths has been successfully achieved by using the same mode-locking signal.
文摘The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.
基金The Natural Science Foundation of Jiangsu Province(No.BK2004207)
文摘A double-exposure fabrication method without any intensity shadow mask to fabricate arbitrarily apodized fiber Bragg gratings( FBGs) with narrow bandwidth is demonstrated by controlling the total ultra violet (UV) irradiation along the grating by varying the speed of a translation stage. The UV source used is a stable continuous intracavity frequency-doubled argonion laser. The parameters (such as length, apodization profile, average index change)of FBGs can be easily changed with this method. The total UV irradiation is kept constant in the doubleexposure process because of the precise control of the exposure time, which ensures that the apodized FBG's bandwidth can be extremely narrow. The full width at half maximum (FWHM) bandwidth of the 2-cm-long apodized FBG fabricated by this method is 0. 15 nm with a maximum reflectivity of more than 95%.
基金supported by the National Natural Science Foundation of China (No.12274344)the Natural Science Basic Research Program of Shaanxi (No.2023-JC-YB-563)the Guangdong Basic and Applied Basic Research Foundation (No.2023A1515011517)。
文摘We demonstrate an intracavity self-synchronized multi-color Q-switched fiber laser using a parallel-integrated fiber Bragg grating(PI-FBG), fabricated by a femtosecond laser with a point-by-point parallel inscription method. The multi-color Q-switched pulses can be always self-synchronized when the group delay differences between neighboring spectra range from-3.4 to 3.4 ps.The starting and evolution dynamics indicate that the saturable absorption effect of the carbon nanotube plays a dual role: synchronously triggering the startup of the pulse at successive colors by active Q-switching and spontaneously compensating to some extent the temporal walk-off of the multi-color pulses through the cross saturable absorption modulation. This work unveils the intracavity self-synchronization mechanism of the multi-color Q-switched pulses and also demonstrates the potential of PI-FBGs for the customizable generation of the synchronized multi-color pulse in a single cavity.
基金supported by the project of Science & Technology Department of Sichuan Province (Grand No: 2015JY0235)National Natural Science Foundation of China (Grand No: 51509174)the Science and Technology Service Network Initiative (No. KFJ-SW-STS-180)
文摘The impact effect of boulder within debris flow is the key factor contributing to peak impact as well as to the failure of debris flow control work. So accurate measuring and calculating the impact force of debris flow can ensure the engineering design strength. However, limited to the existing laboratory conditions and piezoelectric sensor performance, it is impossible, based on the conventional measurements, to devise a computing method for expressing a reliable boulder impact force. This paper has therefore designed a new measurement device according to the method of integrating Fiber Bragg grating(FBG) and reinforced concrete composite beam(RCB) for measuring the impact force of debris flows, i.e. mounting FBG on the axially stressed steel bar in the composite beam at regular intervals to monitor the steel strain. RCB plays the role of contacting debris flow and protecting FBG sensors. Taking this new device as the experimental object, drop testing is designed for simulating and reflecting the boulder impact force. In a series of impacting tests, the relationship between the peak dynamic strain value of the steel bar and the impact force is analyzed, and based on which, an inversion model that uses the steel bar strain as the independent variable is established for calculating the boulder impact force.The experimental results show that this new inversion model can determine the impact force value and its acting position with a system error of 18.1%, which can provide an experimental foundation for measuring the impact force of boulders within the debris flow by the new FBG-based device.
基金Project supported by the National Natural Science Foundation of China(Grant No.61007040)
文摘The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.
基金supported by the National Natural Science Foundation of China (Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department, China (Grant No.16ZB0105)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2016Z007)
文摘Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.
文摘Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thennocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10^-5-2×10^-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain.