期刊文献+
共找到641篇文章
< 1 2 33 >
每页显示 20 50 100
Prediction and optimization of flue pressure in sintering process based on SHAP
1
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION OPTIMIZATION
下载PDF
Study of high pressure sintering behavior of CBN composites starting with CBN-Al mixtures 被引量:3
2
作者 Li Yongjun Li Sicheng Lv Ran Qin Jiaqian Zhang Jian Wang Jianghua Wang Fulong Kou Zili He Duanwei (Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China) 《金刚石与磨料磨具工程》 CAS 北大核心 2008年第S1期176-180,190,共6页
Cubic boron nitride(CBN) composites starting with CBN-Al mixtures were sintered on WC-16 wt%Co substrate under static high pressure of 5.0 GPa at temperatures of 800 to 1 400℃for 30 min.Vickers hardness of the sinter... Cubic boron nitride(CBN) composites starting with CBN-Al mixtures were sintered on WC-16 wt%Co substrate under static high pressure of 5.0 GPa at temperatures of 800 to 1 400℃for 30 min.Vickers hardness of the sintered samples increased with increasing CBN content and the highest hardness of 32.7 GPa was achieved for the CBN-5 wt%Al specimens sintered at 1 400℃.The reactions between CBN and Al started to occur at about 900℃and the reaction products strongly depended on the Al content,sintering temperature and Co diffused from the substrates according to the x-ray diffraction(XRD) observations.The CBN composite sintered at 1 200℃from a CBN-15 wt%Al mixture showed the best cutting performance. 展开更多
关键词 CUBIC BORON NITRIDE HIGH pressure and HIGH temperature sintering
下载PDF
Ferroelectric behaviour of 30nm BaTiO3 ceramics prepared by high pressure assisted sintering 被引量:1
3
作者 肖长江 迟振华 +5 位作者 李凤英 冯少敏 靳常青 王晓慧 邓湘云 李龙土 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第10期3125-3128,共4页
Dense nanocrystalline BaTiO3 ceramics with a homogeneous grain size of 30 nm was obtained by pressure assisted sintering. The ferroelectric behaviour of the ceramics was characterized by the dielectric peak at around ... Dense nanocrystalline BaTiO3 ceramics with a homogeneous grain size of 30 nm was obtained by pressure assisted sintering. The ferroelectric behaviour of the ceramics was characterized by the dielectric peak at around 120 ℃, the P-E hysteresis loop and some ferroelectric domains. These experimental results indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm. The ferroelectric property decreasing with decreasing grain size can be explained by the lowered tetragonality and the 'dilution' effect of grain boundaries. 展开更多
关键词 BATIO3 pressure assisted sintering nanocrystalline ceramics ferroelectric behaviour
下载PDF
Effects of sintering pressure and temperature on microstructure and tribological characteristic of Cu-based aircraft brake material 被引量:6
4
作者 熊翔 盛洪超 +2 位作者 陈洁 姚萍屏State Key Laboratory of Powder Metallurgy Central South University 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第4期669-675,共7页
A novel Cu-based P/M aircraft brake material was prepared and the effects of sintering pressure and temperature on microstructure and tribological characteristic were investigated. For the constant sintering temperatu... A novel Cu-based P/M aircraft brake material was prepared and the effects of sintering pressure and temperature on microstructure and tribological characteristic were investigated. For the constant sintering temperature, when the sintering pressure increases from 0.5 MPa to 1.5 MPa, the porosity, wear loss and friction coefficient decrease remarkably. When the sintering pressure increases from 1.5 MPa to 2.5 MPa, the porosity further decreases but in a little degree and wear behaviors are improved slightly. However, once the sintering pressure is larger than 2.5 MPa, it has no obvious effect on microstructure and tribological characteristic. For the constant sintering pressure, when the sintering temperature increases from 900 ℃ to 930 ℃, the sintered density remarkably increases, and wear behaviors are obviously improved. For further increasing sintering temperature to 1 000 ℃, the density keeps on increasing, but wear behaviors change slightly. 展开更多
关键词 摩擦材料 烧结压力 烧结温度 飞机制动材料 铜基材料 微观结构
下载PDF
High-pressure sintering and magnetic properties of Fe_(86)Zr_(11-x)Nb_xB_3(x=5.5, 6) amorphous alloys
5
作者 卢斌 易丹青 +5 位作者 严彪 殷俊林 刘岩 刘会群 吴炜 马瑞 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第4期828-833,共6页
The thermal stability of milling Fe86Zr11-xNbxB3(x=5.5, 6) melt-spun strip powders and the influence of high-pressure sintering conditions on phase component and grain size of bulk alloys were investigated by X-ray ... The thermal stability of milling Fe86Zr11-xNbxB3(x=5.5, 6) melt-spun strip powders and the influence of high-pressure sintering conditions on phase component and grain size of bulk alloys were investigated by X-ray diffractometry(XRD), differential scanning calorimetry(DSC) and scanning electron microscopy(SEM). The results show that milling melt-spun powder remains in the amorphous state, and the crystallization temperature of which is 480530℃, the apparent activation energy Ep of crystallization process is 294.1219.5kJ/mol. The increasing Nb content can increase crystallization temperature and decrease Ep. Under the sintering conditions of 5.5GPa/3min, when Pw is 1150W, single phase α-Fe nanocrystalline (20.626.7nm) bulk alloy with relative density higher than 99.0% can be obtained. Under the sintering conditions of 5.5GPa/1150W/3min, the magnetic properties of these nanocrystalline bulk alloys are Fe86Zr5.5Nb5.5B3 alloy, Bs=1.15T, Hc=5.08kA·m-1; Fe86Zr5Nb6B3 alloy, Bs=1.26T, Hc=4.27kA·m-1. 展开更多
关键词 铁合金 非晶态合金 烧结法 高压条件 结晶化 粉末冶金
下载PDF
Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils 被引量:5
6
作者 Shuangmeng Zhai Eiji Ito 《Geoscience Frontiers》 SCIE CAS 2011年第1期101-106,共6页
The tried and tested multianvil apparatus has been widely used for high-pressure and hightemperature experimental studies in Earth science. As a result, many important results have been obtained for a better understan... The tried and tested multianvil apparatus has been widely used for high-pressure and hightemperature experimental studies in Earth science. As a result, many important results have been obtained for a better understanding of the components, structure and evolution of the Earth. Due to the strength limi- tation of materials, the attainable multianvil pressure is generally limited to about 30 GPa (corresponding to about 900 km of the depth in the Earth) when tungsten carbide cubes are adopted as second-stage anvils. Compared with tungsten carbide, the sintered diamond is a much harder material. The sintered diamond cubes were introduced as second-stage anvils in a 6--8 type multianvil apparatus in the 1980s, which largely enhanced the capacity of pressure generation in a large volume press. With the development of material synthesis and processing techniques, a large sintered diamond cube (14 ram) is now available. Recently, maximum attainable pressures reaching higher than 90 GPa (corresponding to about 2700 km of the depth in the Earth) have been generated at room temperature by adopting 14-mm sintered diamond anvils. Using this technique, a few researches have been carried out by the quenched method or combined with synchrotron radiation in situ observation. In this paper we review the properties of sintered diamond and the evolu- tion of pressure generation using sintered diamond anvils. As-yet unsolved problems and perspectives for uses in Earth Science are also discussed. 展开更多
关键词 pressure generation sintered diamond anvil Multianvil apparatus
下载PDF
Computational Analysis of Selective Laser Sintering of Inconel 625
7
作者 Bin Xiao Byoung Hee You Tongdan Jin 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期417-432,共16页
A two-dimensional multi-physics finite element model is developed to simulate the Selective Laser Sintering(SLS)process using Inconel 625 powders.The validity of the developed model is first assessed by comparing its ... A two-dimensional multi-physics finite element model is developed to simulate the Selective Laser Sintering(SLS)process using Inconel 625 powders.The validity of the developed model is first assessed by comparing its results with experimental data.Various factors such as phase transition,recoil pressure,surface tension,and theMarangoni force are considered.The study’s findings underscore that the morphology and thermal-fluid dynamics of the molten pool in the SLS process are predominantly shaped by the influence of the Marangoni force and recoil pressure acting on its surface.The recoil pressure at the front of the laser spot rises exponentially with temperature,making the liquid metal move downward,and creating a depression at the pool’s head.It also causes particles to splash from the pool’s rear edge.The study explores the influence of the backward Marangoni force,where hightemperature liquid flows from the front to the rear of the molten pool,creating a vortex and moving the pool in the rear.Process parameters like laser intensity,scan speed,and spot size were analyzed.The findings indicate that higher laser power lower scanning speed and laser beam spot size lead to increased width and depth of the molten pool. 展开更多
关键词 Selective laser sintering(SLS) molten pool recoil pressure marangoni effect
下载PDF
Fabrication and residual stresses of aluminum nitride ceramics sintered at high-pressure
8
作者 Li Xiaolei~(1,2),Ma Hongan~2,Zang Chuanyi~1,Zheng Youjin~(2,3),Liu Yu~1,Zuo Guihong~3, Li Jigang~1,Li Shangsheng~2,Jia Xiaopeng~(1,2) (1.Henan Polytechnic University,Jiaozuo 454000,China 2.National Lab of Superhard Materials,Jilin University,Changchun 130012,China 3.Mudanjiang Teachers College,Mudanjiang 157012,China) 《金刚石与磨料磨具工程》 CAS 北大核心 2008年第S1期181-185,共5页
High-density AlN ceramics were fabricated without sintering additives at high pressure(5.0 GPa) and temperature(1300~1800℃).The sintered bodies were characterized by XRD,SEM and micro-Raman spectroscopy(MRS).Control... High-density AlN ceramics were fabricated without sintering additives at high pressure(5.0 GPa) and temperature(1300~1800℃).The sintered bodies were characterized by XRD,SEM and micro-Raman spectroscopy(MRS).Controlling fracture mode was intragranular when the sintering temperature was as low as 1400℃under 5.0 GPa.The values of residual stresses due to the distortion of the AlN lattice were assessed using the Micro-Raman Spectroscopy(MRS).The residual compression stress of the AlN ceramics sintered at 5.0 GPaand 1700℃for 125 min is 2.0 GPa.The residual compression stress is increased according to the extension of the sintering time. 展开更多
关键词 aluminium NITRIDE high pressure sintering microstructure RESIDUAL STRESS
下载PDF
Application of pre-alloyed powders for diamond tools by ultrahigh pressure water atomization 被引量:2
9
作者 储志强 郭学益 +3 位作者 刘东华 谭彦显 李栋 田庆华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2665-2671,共7页
Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, convention... Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders. 展开更多
关键词 ultrahigh pressure water atomization pre-alloyed powders diamond tools sintered segments
下载PDF
A Breakthrough in Pressure Generation by a Kawai-Type Multi-Anvil Apparatus with Tungsten Carbide Anvils 被引量:4
10
作者 Takayuki Ishii Zhaodong Liu Tomoo Katsura 《Engineering》 SCIE EI 2019年第3期434-440,共7页
Expansion of the pressure range of Kawai-type multi-anvil presses (KMAPs) with tungsten carbide (WC) anvils is called for, especially in the field of Earth science. However, no significant progress in pressure generat... Expansion of the pressure range of Kawai-type multi-anvil presses (KMAPs) with tungsten carbide (WC) anvils is called for, especially in the field of Earth science. However, no significant progress in pressure generation has been made for 40 years. Our recent studies have expanded the pressure generation of a KMAP with WC anvils to 65 GPa, which is the world record for high-pressure generation in this device and is more than 2.5 times higher than conventional pressure generation. We have also successfully generated pressures of about 50 GPa at high temperatures. This work reviews our recently developed technology for high-pressure generation. High-pressure generation at room temperature and at high temperature was attained by integration of the following techniques:① a precisely aligned guideblock system,② a high degree of hardness of the second-stage anvils,③ tapering of the second-stage anvil faces,④ a high-pressure cell consisting of materials with a high bulk modulus, and ⑤ high thermal insulation of the furnace. Our high-pressure technology will facilitate investigation of the phase stability and physical properties of materials under the conditions of the upper part of the lower mantle, and will permit the synthesis and characterization of novel materials. 展开更多
关键词 High pressure Multi-anvil apparatus Tungsten carbide ANVIL sintered diamond Lower mantle
下载PDF
Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature 被引量:4
11
作者 Ming Yang Zi-Li Kou +8 位作者 Teng Liu Jing-Rui Lu Fang-Ming Liu Yin-Juan Liu Lei Qi Wei Ding Hong-Xia Gong Xiao-Lin Ni Duan-Wei He 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期424-429,共6页
Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temp... Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃without additives.In this paper,the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.%to 24 vol.%,which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure.Transmission electron microscopy(TEM)analysis shows that after high pressure and high temperature(HPHT)treatments,the submicron c BN grains abounded with high-density nanotwins and stacking faults,and this contributed to the outstanding mechanical properties of Pc BN.The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃possessed the outstanding properties,including a high Vickers hardness(~61.5 GPa),thermal stability(~1290℃in air),and high density(~3.46 g/cm^(3)). 展开更多
关键词 PcBN compact high temperature and high pressure sintering PcBN without additive
下载PDF
Characterization of diamond MWCNTs composite fiber synthesized under high pressure and high temperature 被引量:1
12
作者 Deng Fuming~(1,2) Lu Xuejun~(1,3) Liu Ruiping~1 Xu Guojun~3 Chen Quwu~1 Li Wenzhu~2 (1.Department of Materials Science and Engineering,China University of Mining and Technology,Beijing Campus,Beijing 100083,China) (2.Department of Physics,Zhejiang University,Hangzhou 310027,China) (3.Beijing Institute of Electro-machining,Beijing 100083,China) 《金刚石与磨料磨具工程》 CAS 北大核心 2008年第S1期62-67,共6页
A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500℃for 1 min,using 3wt%MWCNTs as additive.SEM observation of the fiber after alkali and aci... A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500℃for 1 min,using 3wt%MWCNTs as additive.SEM observation of the fiber after alkali and acid treatment revealed that the outer layer of the fiber is composed of nano-polycrystalline diamond.EDS,XPS,XRD and Raman spectrum analysis further identified that the fiber is composed of MWCNTs in the inner part and nano-polycrystalline diamond in the out layer.It is proposed that the untransformed MWCNTs may act as a template for the regrown outer layer of nano diamond fiber under high pressure and high temperature. 展开更多
关键词 Mullti-walled carbon nanotubes(MWCNTs) Nano-polycrystalline DIAMOND fiber HIGH pressure/high temperature(HP-HT) sintering
下载PDF
Theoretical and experimental investigation on vertical tank technology for sinter waste heat recovery 被引量:4
13
作者 FENG Jun-sheng DONG Hui +2 位作者 GAO Jian-ye LIU Jing-yu LIANG Kai 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2281-2287,共7页
In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas fl... In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas flow pressure drop through the sinter bed layer was measured with different gas velocity and particle diameters, as well as the sinter and air temperatures. The influences of gas superficial velocity and particle diameter on the gas flow pressure drop and gas solid heat transfer in sinter bed layer were analyzed in detail. The revised Ergun's correlation and gas solid heat transfer correlation were obtained according to the regression analysis of experimental data. It is found that, the pressure drop of unit bed layer height gradually increases as a quadratic relationship with increasing the gas superficial velocity, and decreases as an exponential relationship with the increase of sinter particle diameter. For a given sinter temperature, the heat transfer coefficient in sinter bed layer increases with increasing the gas superficial velocity, and increases with decreasing the sinter particle diameter. In addition, the heat transfer coefficient also gradually increases with increasing the sinter temperature at the same gas superficial velocity and sinter particle diameter. The mean deviations between the experimental data obtained from this work and the values calculated by the revised Ergun's correlation and the experimental heat transfer correlation are 7.22% and 4.22% respectively, showing good prediction. 展开更多
关键词 sinter WASTE HEAT pressure DROP HEAT transfer COEFFICIENT experimental study
下载PDF
Grain-refining fabrication of nanocrystalline(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)high-entropy ceramics by ultra-high pressure sintering 被引量:3
14
作者 Zhangtian Wu Wei Ji +4 位作者 Jinyong Zhang Yanan Yuan Ji Zou Weimin Wang Zhengyi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第36期205-212,共8页
As an important A_(2)B_(2)O_(7)-type ceramic,(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)high-entropy pyrochlore pos-sesses promising properties such as high melting point,high chemical durability,and low... As an important A_(2)B_(2)O_(7)-type ceramic,(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)high-entropy pyrochlore pos-sesses promising properties such as high melting point,high chemical durability,and low thermal conductivity.However,the low sintering ability limits its application in thermal barrier coating and radioactive waste immobilization.It usually needs long-term high-temperature soaking to achieve full density,but with inevitable grain growth.In this work,dense and grain-refined nanocrystalline(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)ceramics were prepared with ultra-high pressure sintering(UHPS)method under 10 GPa at a low temperature of 800℃.The densification behavior,microstructure evo-lution,and properties of the UHPS-ed samples were then investigated.The grain size of as-prepared(La_(0.2)Nd_(0.2)Sm_(0.2)Gd_(0.2)Eu_(0.2))_(2)Zr_(2)O_(7)ceramic was only 151 nm,which is 40%smaller than that of raw pow-der.In addition,it exhibited advantageous properties including both high hardness and aqueous durabil-ity.Plastic deformation under ultra-high pressure was believed as the dominant densification mechanism responsible for grain refinement and property improvement. 展开更多
关键词 High-entropy ceramics Ultra-high pressure sintering Grain refining NANOCRYSTALLINE Plastic deformation
原文传递
Investigation of the compressibility and sinterabilty of AZ91 powder production and particle production by gas atomisation method 被引量:1
15
作者 Mehmet Akkas Mustafa Boz 《Journal of Magnesium and Alloys》 SCIE 2019年第3期400-413,共14页
This study intends to determine the pressability and sinterability of AZ91 powder production by gas atomisation method and that of the produced powder for partial production.Therefore,first,a gas atomisation unit has ... This study intends to determine the pressability and sinterability of AZ91 powder production by gas atomisation method and that of the produced powder for partial production.Therefore,first,a gas atomisation unit has been designed and manufactured in the laboratories of the Karabiik University,Department of Manufacturing Engineering.Atomised powder production has been achieved at a temperature of 795℃,with nozzle diameters of 2 and 4 mm and four different gas pressures(5,15,25,35 bars).Argon gas has been used for atomisation and as a protective gas atmosphere.Scanning electron microscope(SEM)is used to determine the shape of the produced AZ91 powder,and a laser particle size analyzer is used to analyze the powder size.Additionally,a microhardness(HV0.025)measurement has been conducted to determine the hardness of the produced powders.To achieve a homogeneous distribution,the produced powders are mixed in a three-dimensional moving turbulator for 30 min.Mixed powders have been pressed at 300,400,500 and 600 MPa and have been sintered at 500℃,550℃and 600℃.Additionally,the density values have been determined before and after sintering of the materials.SEM images have been obtained from the fractured surfaces of the samples before and after sintering.XRD and EDX analyses have been performed to determine the chemical composition.Further,microhardness(HV0.5)is obtained from the pressure surfaces of the samples to determine the effects of the pressing pressure and the sintering temperature on the hardness.As a result of the experimental studies,it has been observed that the powder size decreases with the increase in gas pressure and that the powder shape generally changes from ligament and complex shape to droplet and spherical shape.From the XRD,XRF and EDX results,it has been determined that the structure comprises an a phase(Mg main matrix)and Mg17Al12 interphase,which isβphase,and very small amounts of MgO have been observed.The hardness of the produced powders increased based on the increase in gas pressure.The densities of the samples increased with both increasing pressing pressure and sintering temperature.It has been observed from the fractured surface SEM images that the number of pores formed in the samples decrease with an increase in the pressing pressure.It has been determined that the post-sintering structure exhibitsαtypical dendritic structure.In addition to theα-Mg matrix phase,β(Mg17Al12)intermetallic andα+βeutectic were formed in the structure.The microhardness values of the samples decreased depending on the sintering temperature;the highest hardness value was measured as 64,02 HV0.5 at a pressing pressure of 300 MPa and a sintering temperature of 500℃,whereas the lowest hardness value was measured as 54,86 HV0.5 at a pressing pressure of 600 MPa and a sintering temperature of 600℃. 展开更多
关键词 Gas atomisation AZ91 alloy powder Gas pressure Nozzle diameter PRESSING sintering
下载PDF
Experimental study on convection heat transfer and air drag in sinter layer 被引量:2
16
作者 潘利生 魏小林 +2 位作者 彭岩 时小宝 刘怀亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2841-2848,共8页
Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimenta... Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimental method. The experimental results show that heat conduction of sinter impacts the measurement of convection heat transfer coefficient. Convection heat transfer increases with the increase of air volumetric flow rate. Sinter layer without small particles(sample I) gives higher convection heat transfer coefficient than that with small particles(sample II). Under the considered conditions, volumetric convection heat transfer coefficient is in the range of 400-1800 W/(m3·°C). Air pressure drop in sinter layer increases with the increase of normal superficial velocity, as well as with the rise of air temperature. Additionally, air pressure drop also depends on sinter particle size distribution. In considered experimental conditions, pressure drop in sinter sample II is 2-3 times that in sinter sample I, which resulted from 17% small scale particles in sinter sample II. 展开更多
关键词 sinter layer convection heat transfer pressure drop
下载PDF
UPPER BOUND METHOD FOR SINTERED POWDER MATERIALS IN PLANE STRAIN 被引量:4
17
作者 Hua, Lin Zhao, Zhongzhi 《中国有色金属学会会刊:英文版》 EI CSCD 1994年第2期86-91,共6页
UPPERBOUNDMETHODFORSINTEREDPOWDERMATERIALSINPLANESTRAINUPPERBOUNDMETHODFORSINTEREDPOWDERMATERIALSINPLANESTRA... UPPERBOUNDMETHODFORSINTEREDPOWDERMATERIALSINPLANESTRAINUPPERBOUNDMETHODFORSINTEREDPOWDERMATERIALSINPLANESTRAIN¥Hua,LinZhao,Zh... 展开更多
关键词 sintered POWDER MATERIAL UPPER BOUND method PLANE STRAIN
下载PDF
Effect of current on the microstructure and performance of (Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material via field activated and pressure assisted sintering
18
作者 陈瑞雪 孟庆森 +1 位作者 樊文浩 王忠 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第7期9-13,共5页
(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material was sintered via a field activated and pressure assisted sintering(FAPAS) process.By applying different current intensity(0,60,320 A/cm^2) in the si... (Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material was sintered via a field activated and pressure assisted sintering(FAPAS) process.By applying different current intensity(0,60,320 A/cm^2) in the sintering process,the effects of electric current on the microstructure and thermoelectric performance were investigated.This demonstrated that the application of electric current in the sintering process could significantly improve the uniformity and density of(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) samples.When the current intensity was raised to 320 A/cm^2,the preferred orientation of grains was observed.Moreover,positive effects on the thermoelectric performance of applying electric current in the sintering process were also confirmed.An increase of 0.02 and 0.11 in the maximum figure of merit ZT value could be acquired by applying current of 60 and 320 A/cm^2,respectively. 展开更多
关键词 thermoelectric material (Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) microstructure performance CURRENT field activated and pressure assisted sintering
原文传递
Mo_(2)C-TiN_(0.3)复合材料的高温高压制备及性能
19
作者 邹芹 王宽 +2 位作者 李艳国 戴伟绩 罗永安 《金刚石与磨料磨具工程》 CAS 北大核心 2024年第4期440-448,共9页
将Mo_(2)C和TiN_(0.3)粉体采用机械合金化和高温高压烧结相结合的方法进行分层烧结,并制备30%Mo_(2)C-70%TiN_(0.3)的烧结体复合材料,分析Mo_(2)C-TiN_(0.3)烧结体的物相组成、微观组织结构及力学性能。结果表明:Mo_(2)C和TiN_(0.3)间... 将Mo_(2)C和TiN_(0.3)粉体采用机械合金化和高温高压烧结相结合的方法进行分层烧结,并制备30%Mo_(2)C-70%TiN_(0.3)的烧结体复合材料,分析Mo_(2)C-TiN_(0.3)烧结体的物相组成、微观组织结构及力学性能。结果表明:Mo_(2)C和TiN_(0.3)间存在明显的相互扩散,且形成了2层不同的扩散层;随着烧结温度不断升高,Mo_(2)C-TiN_(0.3)烧结体的晶粒尺寸逐渐变大,会导致烧结体的机械性能变差;在烧结过程中有高硬高脆的MoC生成,能够维持Mo_(2)C-TiN_(0.3)烧结体的硬度在19.0~20.0 GPa,但会降低其断裂韧性。 展开更多
关键词 TiN_(0.3) Mo_(2)C 扩散 高温高压烧结 机械合金化
下载PDF
热压制备SiC/Si_(3)N_(4)陶瓷复合材料的力学性能研究
20
作者 解玉鹏 周新龙 《吉林化工学院学报》 CAS 2024年第1期26-31,共6页
通过热压烧结制备SiC/Si_(3)N_(4)陶瓷复合材料,研究温度和压力对复合材料的力学性能和微观结构的影响。结果表明:(1)原料质量配比Si_(3)N_(4)SiC CaF_(2)=641,在1400℃、25 MPa烧结压力下材料的抗弯强度达到最大值为66.7 MPa,体积密度... 通过热压烧结制备SiC/Si_(3)N_(4)陶瓷复合材料,研究温度和压力对复合材料的力学性能和微观结构的影响。结果表明:(1)原料质量配比Si_(3)N_(4)SiC CaF_(2)=641,在1400℃、25 MPa烧结压力下材料的抗弯强度达到最大值为66.7 MPa,体积密度为2.2 g/cm^(3),气孔率达到29.01%。随着温度的上升,材料的性能逐渐下降。在1400℃时主晶相仍为β-Si_(3)N_(4)且含有少量SiC。(2)相同的质量配比时,在1400℃烧结温度和45 MPa的烧结压力下制备的复合材料的力学性能为77.4 MPa,体积密度达到2.3 g/cm^(3),气孔率达到27.09%。从SEM图中可以观察到随着烧结压力的不断升高,材料的致密度和力学性能逐渐提高。 展开更多
关键词 烧结温度 烧结压力 致密度 力学性能
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部