The two-dimensional interpolating readout, a new readout concept based on resistive anode structure, was studied for the micro-pattern gaseous detector. Within its high spatial resolution, the interpolating resistive ...The two-dimensional interpolating readout, a new readout concept based on resistive anode structure, was studied for the micro-pattern gaseous detector. Within its high spatial resolution, the interpolating resistive readout structure leads to an enormous reduction of electronic channels compared with pure pixel devices, and also makes the detector more reliable and robust, which is attributed to its resistive anode relieving discharge. A GEM (gaseous electron multiplier) detector with 2D interpolating resistive readout structure was set up and the performance of the detector was studied with ^55Fe 5.9 keV X-ray. The detector worked stably at the gain up to 3.5 × 104 without any discharge. An energy resolution of about 19%, and a spatial resolution of about 219 μm (FWHM) were reached, and good imaging performance was also obtained.展开更多
The wedge strip anode (WSA) has been widely used in 2-D positiomsensitive detectors. A circular WSA with an effective diameter of 52 mm is successfully coupled to a tripe gas electron multiplier (GEM) detector thr...The wedge strip anode (WSA) has been widely used in 2-D positiomsensitive detectors. A circular WSA with an effective diameter of 52 mm is successfully coupled to a tripe gas electron multiplier (GEM) detector through a simple resistive layer. A spatial resolution of 440 μm (FWHM) is achieved for a 10 kVp X-ray using 1 atm Ar:CO2=70:30 gas. The simple electronics of only three channels makes it very useful in applications strongly requiring simple interface design, e.g. sealed tubes and high pressure detectors.展开更多
A real-time wireless analog/digital electronic system for the data acquisition of a proportional counter detector is presented. Gaseous detectors working principle is based on the ionization of a gas due to a particle...A real-time wireless analog/digital electronic system for the data acquisition of a proportional counter detector is presented. Gaseous detectors working principle is based on the ionization of a gas due to a particle. The ions are then accelerated towards two electrodes and the read out signal is amplified, shaped and discriminated. It is then sent to the DAQ (data acquisition) electronics. The power supply system can be either the common 220 V source or a battery, whose autonomy is about 72 h during data acquisition. The analog electronics are made up of a high voltage generator for the detector's electrodes, an amplifier system, a shaper and a discriminator. The digital environment is based on an Arduino Mega-2560 board. A wireless modular shield is plugged on the board, in order to access the Arduino board via the 802.11b/g wireless protocol. Four temperature sensors and two pressure sensors are placed in the surroundings of the detector and they are connected to the system in order to read out environmental conditions. The software application, if required by the user, periodically acquires the data produced by the detector, formats them together with the sensor readings into a frame and sends the frame via UDP to an external server. The server plots the data on a webpage. During the data acquisition, the microcontroller continuously monitors the battery status, in order to safely stop the system in case of low battery. The DAQ system is controlled via a web page hosted inside Arduino, which acts like a server. Such page allows to set the detector working parameters (high voltage, discriminator threshold), to start the data acquisition, to test the system via a debug panel and to read temperature and pressure sensors. Experimental results are presented.展开更多
The small-angle neutron scattering(SANS)instrument,one of the first three instruments of the China Spallation Neutron Source(CSNS),is designed to probe the microscopic and mesoscopic structures of materials in the sca...The small-angle neutron scattering(SANS)instrument,one of the first three instruments of the China Spallation Neutron Source(CSNS),is designed to probe the microscopic and mesoscopic structures of materials in the scale range 1–100 nm.A large-area ^(3)He tube array detector has been constructed and operates at the CSNS SANS instrument since August 2018.It consists of 120 linear position-sensitive detector tubes,each 1 m in length and 8 mm in diameter,and filled with ^(3)He gas at 20 bar to obtain a high detection efficiency.The ^(3)He tubes were divided into ten modules,providing an overall area of 1000 mm×1020 mm with a high count rate capability.Because each tube is installed independently,the detector can be quickly repaired in situ by replacing damaged tubes.To reduce air scattering,the SANS detector must operate in a vacuum environment(0.1 mbar).An all-metal sealing technique was adopted to avoid high-voltage breakdown by ensuring a high-voltage connection and an electronic system working in an atmospheric environment.A position resolution of 7.8±0.1 mm(full width at maximum)is measured along the length of the tubes,with a high detection efficiency of 81±2% at 2A.Operating over the past four years,the detector appears to perform well and with a high stability,which supports the SANS instrument to finish approximately 200 user scientific programs.展开更多
A double thick GEM (THGEM) detector with thin THGEM foils and small holes was constructed. In order to optimize the operation parameters of the detector, a simulation study of the detector was carried out using ANSYS ...A double thick GEM (THGEM) detector with thin THGEM foils and small holes was constructed. In order to optimize the operation parameters of the detector, a simulation study of the detector was carried out using ANSYS and Garfield program. Some important characteristics, including primary electron transparency, avalanche development and the secondary electron loss were calculated. Parameters, such as electric field and gas choice were optimized.展开更多
This work shows the results of a streamer discharge mode studies in various gas detectors developed up-to-date. The results are based on a new experimental data from high-speed thin-gap gas detector application develo...This work shows the results of a streamer discharge mode studies in various gas detectors developed up-to-date. The results are based on a new experimental data from high-speed thin-gap gas detector application developments as well as on basic knowledge of multi-wire devices operations.展开更多
Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the hi...Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the high-resolution online trajectory detection for the Hi’Beam-SEE system,which aims to localize SEE-sensitive positions on the IC at the micrometer scale and in real time.We employed a reparameterization method to accelerate the inference speed,merging the branches of the backbone of the location in the deployment scenario.Additionally,we designed an irregular convolution kernel,an attention mechanism,and a fused loss function to improve the positioning accuracy.OML demonstrates exceptional realtime processing capabilities,achieving a positioning accuracy of 1.83μm in processing data generated by the Hi’Beam-SEE system at 163 frames per second per GPU.展开更多
A simulation study of the parallax effect of gaseous detectors using the Garfield program is reported. A method that mainly uses non-uniform cathode potentials to reduce the parallax error of planar type gas detectors...A simulation study of the parallax effect of gaseous detectors using the Garfield program is reported. A method that mainly uses non-uniform cathode potentials to reduce the parallax error of planar type gas detectors is described. By applying it to MWPC and Micro-pattern gas detectors, the method reduces the parallax broadening with very good results. For a 13° incidence track, the width (FWHM) of the parallax broadening is reduced to less than 20% of the normal one after using the special cathode potentials.展开更多
Background The micropattern gaseous detectors(MPGDs)are widely used in high-energy physics experiment,such as detector upgrade projects in LHC,due to its excellent performance on rate capability,spatial and time resol...Background The micropattern gaseous detectors(MPGDs)are widely used in high-energy physics experiment,such as detector upgrade projects in LHC,due to its excellent performance on rate capability,spatial and time resolutions.Method In this paper,we studied the performances of GEM,FTM andμ-RWELL detectors on time and spatial resolutions using Monte Carlo simulation methods and compared their performances and characteristics at various working conditions.Result Result shows that time resolution of MPGDs improves with the increase of electric field intensity in drift region,while spatial resolution shows the reverse tendency.In addition,detectors operating with an electronegative gas mixture show better performances on both time and spatial resolution.Conclusion We studied the performance of triple-GEM,FTM andμ-RWELL detectors with Monte Carlo simulation.In this paper,ANSYS and GARFIELD are used to build full electric field model of the detector.The time resolution and spatial resolution are derived,which are very important for triggering performance and track reconstruction ability.These results will provide references on detector design and the technology chosen in LHC detector upgrade projects.展开更多
目的验证设计改进的光催化涂层净化气态有机物能力评价系统,使所设计的光催化评价系统可以准确地表征光催化涂层对如文章中所述0.25μL/L体积浓度级别的微量苯气体的降解情况。方法首次采用PID光离子化检测器在线监测污染物降解效率,并...目的验证设计改进的光催化涂层净化气态有机物能力评价系统,使所设计的光催化评价系统可以准确地表征光催化涂层对如文章中所述0.25μL/L体积浓度级别的微量苯气体的降解情况。方法首次采用PID光离子化检测器在线监测污染物降解效率,并进行了适当的材料及工艺上的改进。实验以两种TiO_2光触媒涂层样品为对象,以苯作为污染物,进行了一系列性能表征实验。结果评价系统性能良好,可以准确地反应出在5~20 W/m^2可见光辐照下,两种不同光触媒涂层样品的光催化效率分别为11.7%~57.3%以及13.4%~67.4%。在实验考察的体积浓度范围0.05~0.4μL/L内,污染物浓度的变化对降解效率影响不大,而随着污染气体流速从30 m L/min增加至90 m L/min,两种涂层对污染物的降解效率变差,分别从43.6%降低到25.9%以及从52.9%降低到29.9%。结论研究设计的光催化涂层评价系统精密准确稳定,其较高的检出限能够很好地满足光催化材料对痕量气态有机污染物降解情况表征的需要,可广泛用于光催化领域气-固两相反应的科学研究及产品评价。展开更多
The requirement of a large number of electronic channels poses a big challenge to the further applications of Micro-pattern Gas Detectors (MPGDs). By using the redundancy that at least two neighboring strips record ...The requirement of a large number of electronic channels poses a big challenge to the further applications of Micro-pattern Gas Detectors (MPGDs). By using the redundancy that at least two neighboring strips record the signal of a particle, a novel method of encoded multiplexing readout for MPGDs is presented in this paper. The method offers a feasible and easily-extensible way of encoding and decoding, and can significantly reduce the number of readout channels. A verification test was carried out on a 5 cm×5 cm Thick Gas Electron Multiplier (THGEM) detector using a 8 keV Cu X-ray source with 100um slit, where 166 strips were read out by 21 encoded readout channels. The test results show good linearity in its position response, and the spatial resolution root-mean-square (RMS) of the test system is about 260um. This method has potential to build large area detectors and can be easily adapted to other detectors similar to MPGDs.展开更多
文摘The two-dimensional interpolating readout, a new readout concept based on resistive anode structure, was studied for the micro-pattern gaseous detector. Within its high spatial resolution, the interpolating resistive readout structure leads to an enormous reduction of electronic channels compared with pure pixel devices, and also makes the detector more reliable and robust, which is attributed to its resistive anode relieving discharge. A GEM (gaseous electron multiplier) detector with 2D interpolating resistive readout structure was set up and the performance of the detector was studied with ^55Fe 5.9 keV X-ray. The detector worked stably at the gain up to 3.5 × 104 without any discharge. An energy resolution of about 19%, and a spatial resolution of about 219 μm (FWHM) were reached, and good imaging performance was also obtained.
基金Supported by National Natural Science Foundation of China (10735020, 11075026)
文摘The wedge strip anode (WSA) has been widely used in 2-D positiomsensitive detectors. A circular WSA with an effective diameter of 52 mm is successfully coupled to a tripe gas electron multiplier (GEM) detector through a simple resistive layer. A spatial resolution of 440 μm (FWHM) is achieved for a 10 kVp X-ray using 1 atm Ar:CO2=70:30 gas. The simple electronics of only three channels makes it very useful in applications strongly requiring simple interface design, e.g. sealed tubes and high pressure detectors.
文摘A real-time wireless analog/digital electronic system for the data acquisition of a proportional counter detector is presented. Gaseous detectors working principle is based on the ionization of a gas due to a particle. The ions are then accelerated towards two electrodes and the read out signal is amplified, shaped and discriminated. It is then sent to the DAQ (data acquisition) electronics. The power supply system can be either the common 220 V source or a battery, whose autonomy is about 72 h during data acquisition. The analog electronics are made up of a high voltage generator for the detector's electrodes, an amplifier system, a shaper and a discriminator. The digital environment is based on an Arduino Mega-2560 board. A wireless modular shield is plugged on the board, in order to access the Arduino board via the 802.11b/g wireless protocol. Four temperature sensors and two pressure sensors are placed in the surroundings of the detector and they are connected to the system in order to read out environmental conditions. The software application, if required by the user, periodically acquires the data produced by the detector, formats them together with the sensor readings into a frame and sends the frame via UDP to an external server. The server plots the data on a webpage. During the data acquisition, the microcontroller continuously monitors the battery status, in order to safely stop the system in case of low battery. The DAQ system is controlled via a web page hosted inside Arduino, which acts like a server. Such page allows to set the detector working parameters (high voltage, discriminator threshold), to start the data acquisition, to test the system via a debug panel and to read temperature and pressure sensors. Experimental results are presented.
基金supported by the National Key R&D Program of China(No.2021YFA1600703)the National Natural Science Foundation of China(No.12175254)+2 种基金the Youth Innovation Promotion Association CASthe China Spallation Neutron Source Projectthe Innovative Projects of the IHEP(No.E15459U210).
文摘The small-angle neutron scattering(SANS)instrument,one of the first three instruments of the China Spallation Neutron Source(CSNS),is designed to probe the microscopic and mesoscopic structures of materials in the scale range 1–100 nm.A large-area ^(3)He tube array detector has been constructed and operates at the CSNS SANS instrument since August 2018.It consists of 120 linear position-sensitive detector tubes,each 1 m in length and 8 mm in diameter,and filled with ^(3)He gas at 20 bar to obtain a high detection efficiency.The ^(3)He tubes were divided into ten modules,providing an overall area of 1000 mm×1020 mm with a high count rate capability.Because each tube is installed independently,the detector can be quickly repaired in situ by replacing damaged tubes.To reduce air scattering,the SANS detector must operate in a vacuum environment(0.1 mbar).An all-metal sealing technique was adopted to avoid high-voltage breakdown by ensuring a high-voltage connection and an electronic system working in an atmospheric environment.A position resolution of 7.8±0.1 mm(full width at maximum)is measured along the length of the tubes,with a high detection efficiency of 81±2% at 2A.Operating over the past four years,the detector appears to perform well and with a high stability,which supports the SANS instrument to finish approximately 200 user scientific programs.
基金Supported by Fundamental Science on Nuclear Waste and Environmental Security Laboratory,Southwest University of Science and Technology. (Grant No.11zxnk03)
文摘A double thick GEM (THGEM) detector with thin THGEM foils and small holes was constructed. In order to optimize the operation parameters of the detector, a simulation study of the detector was carried out using ANSYS and Garfield program. Some important characteristics, including primary electron transparency, avalanche development and the secondary electron loss were calculated. Parameters, such as electric field and gas choice were optimized.
文摘This work shows the results of a streamer discharge mode studies in various gas detectors developed up-to-date. The results are based on a new experimental data from high-speed thin-gap gas detector application developments as well as on basic knowledge of multi-wire devices operations.
基金supported by the National Natural Science Foundation of China(Nos.U2032209,12222512,12375193,12305210)the National Key Research and Development Program of China(No.2021YFA1601300)the CAS“Light of West China”Program,the CAS Pioneer Hundred Talent Program,the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008).
文摘Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the high-resolution online trajectory detection for the Hi’Beam-SEE system,which aims to localize SEE-sensitive positions on the IC at the micrometer scale and in real time.We employed a reparameterization method to accelerate the inference speed,merging the branches of the backbone of the location in the deployment scenario.Additionally,we designed an irregular convolution kernel,an attention mechanism,and a fused loss function to improve the positioning accuracy.OML demonstrates exceptional realtime processing capabilities,achieving a positioning accuracy of 1.83μm in processing data generated by the Hi’Beam-SEE system at 163 frames per second per GPU.
基金Supported by Scientific Research Fund of the Sichuan Provincial Education Department(11ZA140)Scientific Research Fund of Southwest University of Science and Technology(10zx7123)
文摘A simulation study of the parallax effect of gaseous detectors using the Garfield program is reported. A method that mainly uses non-uniform cathode potentials to reduce the parallax error of planar type gas detectors is described. By applying it to MWPC and Micro-pattern gas detectors, the method reduces the parallax broadening with very good results. For a 13° incidence track, the width (FWHM) of the parallax broadening is reduced to less than 20% of the normal one after using the special cathode potentials.
基金This work is supported by Ministry of Science and Technology of China(10935008)National Natural Science Foundation of China(11461141011).
文摘Background The micropattern gaseous detectors(MPGDs)are widely used in high-energy physics experiment,such as detector upgrade projects in LHC,due to its excellent performance on rate capability,spatial and time resolutions.Method In this paper,we studied the performances of GEM,FTM andμ-RWELL detectors on time and spatial resolutions using Monte Carlo simulation methods and compared their performances and characteristics at various working conditions.Result Result shows that time resolution of MPGDs improves with the increase of electric field intensity in drift region,while spatial resolution shows the reverse tendency.In addition,detectors operating with an electronegative gas mixture show better performances on both time and spatial resolution.Conclusion We studied the performance of triple-GEM,FTM andμ-RWELL detectors with Monte Carlo simulation.In this paper,ANSYS and GARFIELD are used to build full electric field model of the detector.The time resolution and spatial resolution are derived,which are very important for triggering performance and track reconstruction ability.These results will provide references on detector design and the technology chosen in LHC detector upgrade projects.
文摘目的验证设计改进的光催化涂层净化气态有机物能力评价系统,使所设计的光催化评价系统可以准确地表征光催化涂层对如文章中所述0.25μL/L体积浓度级别的微量苯气体的降解情况。方法首次采用PID光离子化检测器在线监测污染物降解效率,并进行了适当的材料及工艺上的改进。实验以两种TiO_2光触媒涂层样品为对象,以苯作为污染物,进行了一系列性能表征实验。结果评价系统性能良好,可以准确地反应出在5~20 W/m^2可见光辐照下,两种不同光触媒涂层样品的光催化效率分别为11.7%~57.3%以及13.4%~67.4%。在实验考察的体积浓度范围0.05~0.4μL/L内,污染物浓度的变化对降解效率影响不大,而随着污染气体流速从30 m L/min增加至90 m L/min,两种涂层对污染物的降解效率变差,分别从43.6%降低到25.9%以及从52.9%降低到29.9%。结论研究设计的光催化涂层评价系统精密准确稳定,其较高的检出限能够很好地满足光催化材料对痕量气态有机污染物降解情况表征的需要,可广泛用于光催化领域气-固两相反应的科学研究及产品评价。
基金Supported by National Natural Science Foundation of China(11222552,11265003)
文摘The requirement of a large number of electronic channels poses a big challenge to the further applications of Micro-pattern Gas Detectors (MPGDs). By using the redundancy that at least two neighboring strips record the signal of a particle, a novel method of encoded multiplexing readout for MPGDs is presented in this paper. The method offers a feasible and easily-extensible way of encoding and decoding, and can significantly reduce the number of readout channels. A verification test was carried out on a 5 cm×5 cm Thick Gas Electron Multiplier (THGEM) detector using a 8 keV Cu X-ray source with 100um slit, where 166 strips were read out by 21 encoded readout channels. The test results show good linearity in its position response, and the spatial resolution root-mean-square (RMS) of the test system is about 260um. This method has potential to build large area detectors and can be easily adapted to other detectors similar to MPGDs.