A numerical simulation study was performed to clarify the thermal mixing characteristics of coolant in the core bottom structure of the high-temperature gas-cooled reactor(HTR). The flow field and temperature field in...A numerical simulation study was performed to clarify the thermal mixing characteristics of coolant in the core bottom structure of the high-temperature gas-cooled reactor(HTR). The flow field and temperature field in the hot gas chamber and the hot gas duct of the HTR were obtained based on the commercial computational fluid dynamics(CFD) program. The numerical simulation results showed that the helium flow with different temperatures in the hot gas mixing chamber and the hot gas duct mixed intensively, and the mixing rate of the temperature in the outlet of the hot gas duct reached 98 %. The results indicated many large-scale swirling flow structures and strong turbulence in the hot gas mixing chamber and the entrance of the hot gas duct, which were responsible for the excellent thermal mixing of the hot gas chamber and the hot gas duct. The calculated results showed that the temperature mixing rate of the hot gas chamber decreased only marginally with increasing Reynolds number.展开更多
Axial gas-liquid separators have been adopted in fission gas removal systems for the development of thorium molten salt reactors. In our previous study, we observed an unsteady flow phenomenon in which the flow patter...Axial gas-liquid separators have been adopted in fission gas removal systems for the development of thorium molten salt reactors. In our previous study, we observed an unsteady flow phenomenon in which the flow pattern is directly dependent on the backpressure in a gas-liquid separator; however, the underlying flow mechanism is still unknown. In order to move a step further in clarifying how the flow pattern evolves with a variation in backpressure, a large eddy simulation(LES) was adopted to study the flow field evolution. In the simulation, an artificial boundary was applied at the separator outlet under the assumption that the backpressure increases linearly. The numerical results indicate that the unsteady flow feature is captured by the LES approach, and the flow transition is mainly due to the axial velocity profile redistribution induced by the backpressure variation. With the increase in backpressure,the axial velocity near the downstream orifice transits from negative to positive. This change in the axial velocity sign forces the unstable spiral vortex to become a stable rectilinear vortex.展开更多
The oxidation reactor plays a key role in producing rutile titanium dioxide (TiO2) from vapor-phase titanium tetrachloride (TiCl4) by employing a swirling flow operation for enhanced gas mixing. This work aims to ...The oxidation reactor plays a key role in producing rutile titanium dioxide (TiO2) from vapor-phase titanium tetrachloride (TiCl4) by employing a swirling flow operation for enhanced gas mixing. This work aims to understand the effect of reactor configuration on the 3-D swirling flow field using computational fluid dynamics (CFD) simulation. Considering the anisotropic turbulence involved, the Reynolds stress model is applied to describe the complex swirling flow together with the cross-flow mixing of gases. The results show significant effect of the flow angle between the wall jet of air stream (representing TiCl4 in practice) and the axial direction on the initial flow field of cross-flow mixing, where 60° gives smooth profiles of axial velocity development while 90° may provide the fastest mixing between the jet and the axial bulk flow. The pipe shape for the reaction and developing zone, i.e., straight, expanding and shrinking, shows slight influence on the hydrodynamics.展开更多
基金Supported by National Natural Science Foundation of China (No. 11375099)
文摘A numerical simulation study was performed to clarify the thermal mixing characteristics of coolant in the core bottom structure of the high-temperature gas-cooled reactor(HTR). The flow field and temperature field in the hot gas chamber and the hot gas duct of the HTR were obtained based on the commercial computational fluid dynamics(CFD) program. The numerical simulation results showed that the helium flow with different temperatures in the hot gas mixing chamber and the hot gas duct mixed intensively, and the mixing rate of the temperature in the outlet of the hot gas duct reached 98 %. The results indicated many large-scale swirling flow structures and strong turbulence in the hot gas mixing chamber and the entrance of the hot gas duct, which were responsible for the excellent thermal mixing of the hot gas chamber and the hot gas duct. The calculated results showed that the temperature mixing rate of the hot gas chamber decreased only marginally with increasing Reynolds number.
基金supported by the National Natural Science Foundation of China(Nos.11535009 and 51406114)
文摘Axial gas-liquid separators have been adopted in fission gas removal systems for the development of thorium molten salt reactors. In our previous study, we observed an unsteady flow phenomenon in which the flow pattern is directly dependent on the backpressure in a gas-liquid separator; however, the underlying flow mechanism is still unknown. In order to move a step further in clarifying how the flow pattern evolves with a variation in backpressure, a large eddy simulation(LES) was adopted to study the flow field evolution. In the simulation, an artificial boundary was applied at the separator outlet under the assumption that the backpressure increases linearly. The numerical results indicate that the unsteady flow feature is captured by the LES approach, and the flow transition is mainly due to the axial velocity profile redistribution induced by the backpressure variation. With the increase in backpressure,the axial velocity near the downstream orifice transits from negative to positive. This change in the axial velocity sign forces the unstable spiral vortex to become a stable rectilinear vortex.
文摘The oxidation reactor plays a key role in producing rutile titanium dioxide (TiO2) from vapor-phase titanium tetrachloride (TiCl4) by employing a swirling flow operation for enhanced gas mixing. This work aims to understand the effect of reactor configuration on the 3-D swirling flow field using computational fluid dynamics (CFD) simulation. Considering the anisotropic turbulence involved, the Reynolds stress model is applied to describe the complex swirling flow together with the cross-flow mixing of gases. The results show significant effect of the flow angle between the wall jet of air stream (representing TiCl4 in practice) and the axial direction on the initial flow field of cross-flow mixing, where 60° gives smooth profiles of axial velocity development while 90° may provide the fastest mixing between the jet and the axial bulk flow. The pipe shape for the reaction and developing zone, i.e., straight, expanding and shrinking, shows slight influence on the hydrodynamics.