期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Theoretical and Experimental Analysis of Heat Transfer and Condensation in Micro-Ribbed Tubes
1
作者 Daoming Shen Jinhong Xia +1 位作者 Chao Gui Songtao Xue 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1411-1424,共14页
The thermal transmission coefficient for a micro-ribbed tube has been determined using theoretical relationships and the outcomes of such calculations have been compared with experiments conducted using a R1234yf refr... The thermal transmission coefficient for a micro-ribbed tube has been determined using theoretical relationships and the outcomes of such calculations have been compared with experiments conducted using a R1234yf refrigerant undergoing condensation.In particular four theoretical single-phase flow and three multi-phase flow models have been used in this regard.The experimental results show that:the Oliver et al.criterion equation overestimates the experimental results as its accuracy is significantly affected by the specific conditions realized inside micro-fin tubes;the Miyara et al.criterion equation prediction error is less than 15%;the Cavallini et al.approach gives the highest prediction accuracy;the Goto et al.model overestimates the test data.Such results are critically discussed and some indications for the improvement of such models are provided. 展开更多
关键词 micro-ribbed tube flow condensation thermal transmission coefficient dimensionless criterion equation
下载PDF
Heat Transfer Enhancement Using R1234yf Refrigerants in Micro-Ribbed Tubes in a Two-Phase Flow Regime
2
作者 Daoming Shen Xia Zhang +2 位作者 Wei He Jinhong Xia Songtao Xue 《Fluid Dynamics & Materials Processing》 EI 2020年第6期192-205,共14页
Experiments about heat transfer in the presence of a two-phase flow due to the condensation of a R1234yf refrigerant have been performed considering a smooth tube and two micro-fin tubes.The following experimental con... Experiments about heat transfer in the presence of a two-phase flow due to the condensation of a R1234yf refrigerant have been performed considering a smooth tube and two micro-fin tubes.The following experimental conditions have been considered:Condensation temperatures of 40℃,43℃ and 45℃,mass fluxes of 500–900 kg/(m^(2)·s),vapor qualities at the inlet and outlet of the heat transfer tube in the ranges 0.8–0.9 and 0.2–0.3,respectively.These tests have shown that:(1)The heat transfer coefficient increases with decreasing the condensation temperature and on increasing the mass flux;(2)The heat transfer coefficient inside the micro-fin tube is larger than that for the smooth tube;(3)The heat transfer enhancement factors for the micro-fin tube with a fin helical angle of 8°and 15°are 2.51–2.89 and 3.11–3.57,respectively;both are higher than the area increase ratio.These experimental results have been compared with correlations available in the literature:the Cavallini et al.correlation has the highest accuracy in predicting the heat transfer coefficient inside the smooth tube,the related percentage error and the average prediction error are±8%and 0.56%,respectively;for the micro-fin tube these become±25%and 6%,respectively. 展开更多
关键词 R1234yf micro-ribbed tube heat transfer coefficient heat transfer enhancement factor
下载PDF
Numerical Investigation on Flow and Cooling Characteristics of a Micro-Ribbed Vane Endwall 被引量:2
3
作者 DU Kun CHEN Qihao +3 位作者 LI Yang SUNDEN Bengt LIU Cunliang LI Wei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期786-799,共14页
The secondary flow originated from the inherent pressure gradient inside the vane cascade has a strong impact on the endwall cooling performance as the crossflow sweeps the upstream coolant jet towards the suction sid... The secondary flow originated from the inherent pressure gradient inside the vane cascade has a strong impact on the endwall cooling performance as the crossflow sweeps the upstream coolant jet towards the suction side,resulting in intensifying thermal load near the pressure side endwall.Hence a novel ribbed-endwall is introduced to suppress passage crossflow.The effects of the mass flow ratio and the rib layout were examined using numerical simulations by solving the three-dimensional Reynolds-averaged Navier-Stokes(RANS)equations with the shear stress transport(SST)k-ωturbulence model.The results indicate that the ribs effectively prevent the coolant migrating from the pressure side to the suction side,helping the coolant jet to spread along the lateral orientation.Therefore,the endwall adiabatic film cooling effectiveness is substantially improved.The maximum cooling effectiveness is achieved for the case with three-ribs when the height of the rib equals one hole diameter among all cases.The area-averaged adiabatic cooling effectiveness is enhanced by 31.6%relative to the flat endwall when the mass flow ratio of coolant to mainstream equals to 0.52%.More importantly,the ribbed-endwall obtains a relatively lower level of aerodynamic loss owing to the reduced lateral migration inside the vane cascade. 展开更多
关键词 vane endwall micro-ribbed endwall adiabatic film cooling effectiveness flow structure numerical study
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部