In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene p...In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial...The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured d...The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.展开更多
To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,al...To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance.展开更多
Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s...Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s along the fault strike direction. The source rupture process consists of three sub-events, the first oc- curred near the hypocenter and the rest two ruptured along the up-dip direction and broke the sea bed, causing a maximum slip of about 30 m. The large-scale sea bed breakage may account for the tremendous tsunami disaster which resulted in most of the death and missing in this mega earthquake.展开更多
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is di...Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.展开更多
Safe, ef cient, and sustainable operations and control are primary objectives in industrial manufacturing processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent limitatio...Safe, ef cient, and sustainable operations and control are primary objectives in industrial manufacturing processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent limitations in practice. The burgeoning era of big data is in uencing the process industries tremendously, providing unprecedented opportunities to achieve smart manufacturing. This kind of manufacturing requires machines to not only be capable of relieving humans from intensive physical work, but also be effective in taking on intellectual labor and even producing innovations on their own. To attain this goal, data analytics and machine learning are indispensable. In this paper, we review recent advances in data analytics and machine learning applied to the monitoring, control, and optimization of industrial processes, paying particular attention to the interpretability and functionality of machine learning mod- els. By analyzing the gap between practical requirements and the current research status, promising future research directions are identi ed.展开更多
The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical ...The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process.展开更多
As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and...As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.展开更多
The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark ...The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark State Magnetometer)probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.展开更多
Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated thro...Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated through consistency test, making the data consumption uniform to improve the comparability of data. Due to the limit of input and output data of decision making unit in data envelopment analysis(DEA), the energy efficiency data from the same technology in a certain year are disposed monthly using DEA. The DEA data of energy efficiency from the same technology are weighted and fused using analytic hierarchy process. The energy efficiency data from different technologies are evaluated by their relative effectiveness to find the direction of energy saving and consumption reduction.展开更多
In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the r...In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.展开更多
The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so t...The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.展开更多
A novel technique for automatic seismic data processing using both integral and local feature of seismograms was presented in this paper. Here, the term integral feature of seismograms refers to feature which may depi...A novel technique for automatic seismic data processing using both integral and local feature of seismograms was presented in this paper. Here, the term integral feature of seismograms refers to feature which may depict the shape of the whole seismograms. However, unlike some previous efforts which completely abandon the DIAL approach, i.e., signal detection, phase identifi- cation, association, and event localization, and seek to use envelope cross-correlation to detect seismic events directly, our technique keeps following the DIAL approach, but in addition to detect signals corresponding to individual seismic phases, it also detects continuous wave-trains and explores their feature for phase-type identification and signal association. More concrete ideas about how to define wave-trains and combine them with various detections, as well as how to measure and utilize their feature in the seismic data processing were expatiated in the paper. This approach has been applied to the routine data processing by us for years, and test results for a 16 days' period using data from the Xinjiang seismic station network were presented. The automatic processing results have fairly low false and missed event rate simultaneously, showing that the new technique has good application prospects for improvement of the automatic seismic data processing.展开更多
How to design a multicast key management system with high performance is a hot issue now. This paper will apply the idea of hierarchical data processing to construct a common analytic model based on directed logical k...How to design a multicast key management system with high performance is a hot issue now. This paper will apply the idea of hierarchical data processing to construct a common analytic model based on directed logical key tree and supply two important metrics to this problem: re-keying cost and key storage cost. The paper gives the basic theory to the hierarchical data processing and the analyzing model to multieast key management based on logical key tree. It has been proved that the 4-ray tree has the best performance in using these metrics. The key management problem is also investigated based on user probability model, and gives two evaluating parameters to re-keying and key storage cost.展开更多
Low-field(nuclear magnetic resonance)NMR has been widely used in petroleum industry,such as well logging and laboratory rock core analysis.However,the signal-to-noise ratio is low due to the low magnetic field strengt...Low-field(nuclear magnetic resonance)NMR has been widely used in petroleum industry,such as well logging and laboratory rock core analysis.However,the signal-to-noise ratio is low due to the low magnetic field strength of NMR tools and the complex petrophysical properties of detected samples.Suppressing the noise and highlighting the available NMR signals is very important for subsequent data processing.Most denoising methods are normally based on fixed mathematical transformation or handdesign feature selectors to suppress noise characteristics,which may not perform well because of their non-adaptive performance to different noisy signals.In this paper,we proposed a“data processing framework”to improve the quality of low field NMR echo data based on dictionary learning.Dictionary learning is a machine learning method based on redundancy and sparse representation theory.Available information in noisy NMR echo data can be adaptively extracted and reconstructed by dictionary learning.The advantages and application effectiveness of the proposed method were verified with a number of numerical simulations,NMR core data analyses,and NMR logging data processing.The results show that dictionary learning can significantly improve the quality of NMR echo data with high noise level and effectively improve the accuracy and reliability of inversion results.展开更多
In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative ...In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative materials, this paper presents extensible markup language (XML) based strategy for several important problems of data processing in network supported collaborative design, such as the representation of standard for the exchange of product model data (STEP) with XML in the product information expression and the management of XML documents using relational database. The paper gives a detailed exposition on how to clarify the mapping between XML structure and the relationship database structure and how XML-QL queries can be translated into structured query language (SQL) queries. Finally, the structure of data processing system based on XML is presented.展开更多
基金supported by the National Natural Science Foundation of China(22178190)。
文摘In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
基金supported by China Southern Power Grid Technology Project under Grant 03600KK52220019(GDKJXM20220253).
文摘The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
文摘The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.
基金Weaponry Equipment Pre-Research Foundation of PLA Equipment Ministry (No. 9140A06050409JB8102)Pre-Research Foundation of PLA University of Science and Technology (No. 2009JSJ11)
文摘To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance.
基金financially supported by the National Natural Science Foundation of China (Nos. 90915012 and 41090291)the Research Project in Earthquake Science, CEA (No.201108002)
文摘Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s along the fault strike direction. The source rupture process consists of three sub-events, the first oc- curred near the hypocenter and the rest two ruptured along the up-dip direction and broke the sea bed, causing a maximum slip of about 30 m. The large-scale sea bed breakage may account for the tremendous tsunami disaster which resulted in most of the death and missing in this mega earthquake.
文摘Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.
文摘Safe, ef cient, and sustainable operations and control are primary objectives in industrial manufacturing processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent limitations in practice. The burgeoning era of big data is in uencing the process industries tremendously, providing unprecedented opportunities to achieve smart manufacturing. This kind of manufacturing requires machines to not only be capable of relieving humans from intensive physical work, but also be effective in taking on intellectual labor and even producing innovations on their own. To attain this goal, data analytics and machine learning are indispensable. In this paper, we review recent advances in data analytics and machine learning applied to the monitoring, control, and optimization of industrial processes, paying particular attention to the interpretability and functionality of machine learning mod- els. By analyzing the gap between practical requirements and the current research status, promising future research directions are identi ed.
基金Supported by National Natural Science Foundation of China(Grant No.51805260)National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.51925505)National Natural Science Foundation of China(Grant No.51775278).
文摘The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process.
基金the NBI team and the partial support of National Natural Science Foundation of China (No. 61363019)National Natural Science Foundation of Qinghai Province (No. 2014-ZJ-718)
文摘As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.
基金supported by National Key Research and Development Program of China from MOST (2016YFB0501503)
文摘The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark State Magnetometer)probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404)
文摘Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated through consistency test, making the data consumption uniform to improve the comparability of data. Due to the limit of input and output data of decision making unit in data envelopment analysis(DEA), the energy efficiency data from the same technology in a certain year are disposed monthly using DEA. The DEA data of energy efficiency from the same technology are weighted and fused using analytic hierarchy process. The energy efficiency data from different technologies are evaluated by their relative effectiveness to find the direction of energy saving and consumption reduction.
基金Supported by the National Natural Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.
基金Project 70533050 supported by the National Natural Science Foundation of China
文摘The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.
文摘A novel technique for automatic seismic data processing using both integral and local feature of seismograms was presented in this paper. Here, the term integral feature of seismograms refers to feature which may depict the shape of the whole seismograms. However, unlike some previous efforts which completely abandon the DIAL approach, i.e., signal detection, phase identifi- cation, association, and event localization, and seek to use envelope cross-correlation to detect seismic events directly, our technique keeps following the DIAL approach, but in addition to detect signals corresponding to individual seismic phases, it also detects continuous wave-trains and explores their feature for phase-type identification and signal association. More concrete ideas about how to define wave-trains and combine them with various detections, as well as how to measure and utilize their feature in the seismic data processing were expatiated in the paper. This approach has been applied to the routine data processing by us for years, and test results for a 16 days' period using data from the Xinjiang seismic station network were presented. The automatic processing results have fairly low false and missed event rate simultaneously, showing that the new technique has good application prospects for improvement of the automatic seismic data processing.
基金Supported by the National High-Technology Re-search and Development Programof China(2001AA115300) the Na-tional Natural Science Foundation of China (69874038) ,the Nat-ural Science Foundation of Liaoning Province(20031018)
文摘How to design a multicast key management system with high performance is a hot issue now. This paper will apply the idea of hierarchical data processing to construct a common analytic model based on directed logical key tree and supply two important metrics to this problem: re-keying cost and key storage cost. The paper gives the basic theory to the hierarchical data processing and the analyzing model to multieast key management based on logical key tree. It has been proved that the 4-ray tree has the best performance in using these metrics. The key management problem is also investigated based on user probability model, and gives two evaluating parameters to re-keying and key storage cost.
基金supported by Science Foundation of China University of Petroleum,Beijing(Grant Number ZX20210024)Chinese Postdoctoral Science Foundation(Grant Number 2021M700172)+1 种基金The Strategic Cooperation Technology Projects of CNPC and CUP(Grant Number ZLZX2020-03)National Natural Science Foundation of China(Grant Number 42004105)
文摘Low-field(nuclear magnetic resonance)NMR has been widely used in petroleum industry,such as well logging and laboratory rock core analysis.However,the signal-to-noise ratio is low due to the low magnetic field strength of NMR tools and the complex petrophysical properties of detected samples.Suppressing the noise and highlighting the available NMR signals is very important for subsequent data processing.Most denoising methods are normally based on fixed mathematical transformation or handdesign feature selectors to suppress noise characteristics,which may not perform well because of their non-adaptive performance to different noisy signals.In this paper,we proposed a“data processing framework”to improve the quality of low field NMR echo data based on dictionary learning.Dictionary learning is a machine learning method based on redundancy and sparse representation theory.Available information in noisy NMR echo data can be adaptively extracted and reconstructed by dictionary learning.The advantages and application effectiveness of the proposed method were verified with a number of numerical simulations,NMR core data analyses,and NMR logging data processing.The results show that dictionary learning can significantly improve the quality of NMR echo data with high noise level and effectively improve the accuracy and reliability of inversion results.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. AA420060)
文摘In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative materials, this paper presents extensible markup language (XML) based strategy for several important problems of data processing in network supported collaborative design, such as the representation of standard for the exchange of product model data (STEP) with XML in the product information expression and the management of XML documents using relational database. The paper gives a detailed exposition on how to clarify the mapping between XML structure and the relationship database structure and how XML-QL queries can be translated into structured query language (SQL) queries. Finally, the structure of data processing system based on XML is presented.