In order to survey the infectious situation of canine coronavirus (CCV) in giant panda population, a virus neutralization test detecting specific antibodies against CCV in giant panda抯 sera was established by using t...In order to survey the infectious situation of canine coronavirus (CCV) in giant panda population, a virus neutralization test detecting specific antibodies against CCV in giant panda抯 sera was established by using two-fold dilutions of serum and 100 TCID50 of the virus. The 62 sera samples of giant pandas, which were gathered from zoos and reserve region of Sichuan Province, China were detected. The neutralization antibody titer of 1:4 was recognized as the positive criterion, 8 sera samples were detected to be positive, and the positive rate was 12.9%. The titers of neutralizing antibody ranged from 1:8 to 1:32. It was the first comprehensive investigation on neutralization antibodies against CCV in giant panda population in China. The results of study showed that the infection of CCV in giant panda population was universal, which has posed a threat to the health of giant panda. Therefore, it is incumbent on us to study safe and effective vaccines to protect giant panda against CCV infection.展开更多
Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases a...Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis(JE)in the coastal provinces of China.Methods In this study,we collected serum specimens from patients with JE in three coastal provinces of China(Guangdong,Zhejiang,and Shandong)from 2018 to 2020 and conducted JEV cross-neutralization tests against G1,G3,and G5.Results Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong(92 patients),Zhejiang(192 patients),and Guangdong(77 patients),China,from 2018 to 2020.Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV.Two cases were confirmed to be infected with G1 JEV,32 with G3 JEV,and two with G5 JEV.Conclusion G3 was the primary infection genotype among JE cases with a definite infection genotype,and the infection caused by G5 JEV was confirmed serologically in China.展开更多
Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and less...Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and lessen or stop the spread of zoonotic diseases to humans. Animal vaccines that are both safe and efficacious are vital to modern culture. The vaccine should induce a strong, protective and prolonged immune response against the antigenic factor. In order to achieve these goals, novel vaccination techniques and an efficient adjuvant are required to render the vaccine immunogenically protective and trigger a strong immune response. Aim: Our study aims to promote and enhance the immunogenicity against RVF virus disease through lyophilized inactivated RVF vaccine through induction of early cellular, high and prolonged humeral immunity in vaccinated animals using cabopol as stabilizer and Saponin or normal saline as a diluent at time of vaccination. Moreover, manufacturing of these vaccines is easy to be done. Results: The gained results revealed that RVF freeze-dried vaccine with Carbopol that reconstituted using Saponin elicited better immune response than that reconstituted using normal saline (NaCl). The cell mediated immune response as represented by lymphocyte blastogenesis and phagocytic activity were markedly increased with high levels when we used Saponin as a diluent than that in group vaccinated with vaccine diluted with NaCl, on the other side the humeral immune response in group vaccinated using the Saponin as diluent is more detected and stayed within the protective level till the end of 11<sup>th</sup> month post vaccination (1.5 TCID<sub>50</sub>) while the immune response induced after using normal saline as a diluent stayed within the protective level till the end of 10<sup>th</sup> month post vaccination (1.8 TCID<sub>50</sub>). Conclusion: The use of Saponin as a diluent for reconstitution of the freeze dried RVF vaccine is preferable than the use of normal saline enhancing both sheep cellular and humeral immune response.展开更多
基金This research was supported by National Science Founda-tion of China (No. 30000123) and Conversation Department of Wildlife Ani-mal & Plants of State Forestry Bureau.
文摘In order to survey the infectious situation of canine coronavirus (CCV) in giant panda population, a virus neutralization test detecting specific antibodies against CCV in giant panda抯 sera was established by using two-fold dilutions of serum and 100 TCID50 of the virus. The 62 sera samples of giant pandas, which were gathered from zoos and reserve region of Sichuan Province, China were detected. The neutralization antibody titer of 1:4 was recognized as the positive criterion, 8 sera samples were detected to be positive, and the positive rate was 12.9%. The titers of neutralizing antibody ranged from 1:8 to 1:32. It was the first comprehensive investigation on neutralization antibodies against CCV in giant panda population in China. The results of study showed that the infection of CCV in giant panda population was universal, which has posed a threat to the health of giant panda. Therefore, it is incumbent on us to study safe and effective vaccines to protect giant panda against CCV infection.
基金supported by the National Key Research and Development Program[2022YFC2302700].
文摘Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis(JE)in the coastal provinces of China.Methods In this study,we collected serum specimens from patients with JE in three coastal provinces of China(Guangdong,Zhejiang,and Shandong)from 2018 to 2020 and conducted JEV cross-neutralization tests against G1,G3,and G5.Results Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong(92 patients),Zhejiang(192 patients),and Guangdong(77 patients),China,from 2018 to 2020.Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV.Two cases were confirmed to be infected with G1 JEV,32 with G3 JEV,and two with G5 JEV.Conclusion G3 was the primary infection genotype among JE cases with a definite infection genotype,and the infection caused by G5 JEV was confirmed serologically in China.
文摘Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and lessen or stop the spread of zoonotic diseases to humans. Animal vaccines that are both safe and efficacious are vital to modern culture. The vaccine should induce a strong, protective and prolonged immune response against the antigenic factor. In order to achieve these goals, novel vaccination techniques and an efficient adjuvant are required to render the vaccine immunogenically protective and trigger a strong immune response. Aim: Our study aims to promote and enhance the immunogenicity against RVF virus disease through lyophilized inactivated RVF vaccine through induction of early cellular, high and prolonged humeral immunity in vaccinated animals using cabopol as stabilizer and Saponin or normal saline as a diluent at time of vaccination. Moreover, manufacturing of these vaccines is easy to be done. Results: The gained results revealed that RVF freeze-dried vaccine with Carbopol that reconstituted using Saponin elicited better immune response than that reconstituted using normal saline (NaCl). The cell mediated immune response as represented by lymphocyte blastogenesis and phagocytic activity were markedly increased with high levels when we used Saponin as a diluent than that in group vaccinated with vaccine diluted with NaCl, on the other side the humeral immune response in group vaccinated using the Saponin as diluent is more detected and stayed within the protective level till the end of 11<sup>th</sup> month post vaccination (1.5 TCID<sub>50</sub>) while the immune response induced after using normal saline as a diluent stayed within the protective level till the end of 10<sup>th</sup> month post vaccination (1.8 TCID<sub>50</sub>). Conclusion: The use of Saponin as a diluent for reconstitution of the freeze dried RVF vaccine is preferable than the use of normal saline enhancing both sheep cellular and humeral immune response.