使用基于微秒时间尺度上毫克级含能材料的激光诱导空气冲击波爆轰性能测试方法——The Laser-induced Air Shock from Energetic Materials(LASEM),结合脉冲激光系统和高速纹影研究了不同粒径以及不同堆积密度对六硝基六氮杂异戊兹烷(CL...使用基于微秒时间尺度上毫克级含能材料的激光诱导空气冲击波爆轰性能测试方法——The Laser-induced Air Shock from Energetic Materials(LASEM),结合脉冲激光系统和高速纹影研究了不同粒径以及不同堆积密度对六硝基六氮杂异戊兹烷(CL-20)、奥克托金(HMX)、黑索今(RDX)、1,1-二氨基-2,2-二硝基乙烯(FOX-7)和2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM105)这5种含能材料冲击波特征速度的影响。结果表明,粒径小于75μm时,测量结果偏差较大;粒径在75~500μm之间时,测量结果波动性较弱,且与爆压值的排列顺序一致,能够作为参考数据评估实际的爆轰性能。堆积密度小于0.7 g·cm^(-3)时,测量结果波动范围较大;堆积密度在0.7~1.35 g·cm^(-3)之间时,测量结果较为平稳,且与爆压值的排列顺序一致,测量值更具参考价值。展开更多
文摘使用基于微秒时间尺度上毫克级含能材料的激光诱导空气冲击波爆轰性能测试方法——The Laser-induced Air Shock from Energetic Materials(LASEM),结合脉冲激光系统和高速纹影研究了不同粒径以及不同堆积密度对六硝基六氮杂异戊兹烷(CL-20)、奥克托金(HMX)、黑索今(RDX)、1,1-二氨基-2,2-二硝基乙烯(FOX-7)和2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM105)这5种含能材料冲击波特征速度的影响。结果表明,粒径小于75μm时,测量结果偏差较大;粒径在75~500μm之间时,测量结果波动性较弱,且与爆压值的排列顺序一致,能够作为参考数据评估实际的爆轰性能。堆积密度小于0.7 g·cm^(-3)时,测量结果波动范围较大;堆积密度在0.7~1.35 g·cm^(-3)之间时,测量结果较为平稳,且与爆压值的排列顺序一致,测量值更具参考价值。