期刊文献+
共找到4,408篇文章
< 1 2 221 >
每页显示 20 50 100
Prediction of Wearing of Cutting Tools Using Real Time Machining Parameters and Temperature Using Rayleigh-Ham Method
1
作者 Jean Nyatte Nyatte Fabrice Alban Epee +3 位作者 Wilba Christophe Kikmo Samuel Batambock Claude Valéry Ngayihi Abbe Robert Nzengwa 《Modern Mechanical Engineering》 2023年第2期35-54,共20页
Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determin... Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining. 展开更多
关键词 MACHINING cutting Temperature Modeling Wear cutting tool
下载PDF
Cutting performance of micro-textured PCBN tool 被引量:3
2
作者 Lin Fan Zilong Deng +1 位作者 Xingjun Gao Yan He 《Nanotechnology and Precision Engineering》 CAS CSCD 2021年第2期25-32,共8页
To study the efect of micro-texture on the cutting performance of polyrystalline cubic boron nitide(PCBN)tools,five types of micro-textures(circular pits,eliptical grooves,transverse grooves,composite grooves,and wavy... To study the efect of micro-texture on the cutting performance of polyrystalline cubic boron nitide(PCBN)tools,five types of micro-textures(circular pits,eliptical grooves,transverse grooves,composite grooves,and wavy grooves)were applied to the rake surface of PCBN tools by an optical fber laser marking machine.Through a combination of three dimensional cutting simulations and experiments,the influences of micro-texture on chip-tool contact area,cutting force,chip morphology,shear angle,and surface roughness during the cuting process were analyzed.The results indicated that the chip--tool contact area and cutting force of both non-textured and micro textured tools increased with increasing cutting speed,while the shear angle decreased with increasing cutting speed.The chip-tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non textured tool The chip-tool contact area and cutting force obtained by the wavy-groove micro textured tool were the smallest.The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool,and the chip morphology was more stable.The transverse-groove micro-textured tool had a better chip breaking efect.The chip rnadius generated by the lliptical groove micro textured tool was 0.96 cm,while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm.The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%-56.7%.Under the same cutting conditions,the five types of micro-textured tools gave a smaller chip--tool contact area,cutting force,chip radius,and surface roughness and a larger shear angle than the non-textured tool.In addition,the elliptical groove and wavy-groove micro-textured tools had better cuting performance. 展开更多
关键词 micro-textured tool Chip tool contact area cutting force Chip radius
下载PDF
Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives 被引量:6
3
作者 Kai Cheng Zhi-Chao Niu +2 位作者 Robin C.Wang Richard Rakowski Richard Bateman 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1162-1176,共15页
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative des... Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultra- precision and micro manufacturing purposes. Implemen- tation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation tech- niques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algo- rithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in- process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) applica- tion exemplars on adaptive smart machining. 展开更多
关键词 Smart cutting tool Smart machining Fast toolservo (FFS) Precision machining Micro manufacturing Smart tooling
下载PDF
Cutting Performance and Mechanism of RE Carbide Tools 被引量:2
4
作者 Jianbing Cheng, Yufang Wu, Qixun Yu 1) Department of Mechanical Engineering, Beijing Technology and Business University, Beijing 100037, China 2) College of Mechanical Engineering and Automation, Beijing Institute of Technology Beijing 100081, China 《Rare Metals》 SCIE EI CAS CSCD 2001年第3期197-201,共5页
The research of rare earth elements (RE), added into cemented carbide tools, is one of the recent developments of new types of tool materials in China. Systematic experiments about RE carbides YG8R. (K30), YT14R (P20)... The research of rare earth elements (RE), added into cemented carbide tools, is one of the recent developments of new types of tool materials in China. Systematic experiments about RE carbides YG8R. (K30), YT14R (P20) and, YW1R (M10) were made to study on the cutting performance in comparison with non-RE carbides YG8, YT14 and YW1. The cutting experiments were as follows: tool life, cutting force, tool-chip friction coefficient and interrupted machining. The action of RE on the carbide materials and the cutting mechanism of the RE carbide tools in the cutting process were verified with the aid of SEM and energy spectrum analysis. Experimental results show that the RE carbide tools have a good overall performance. 展开更多
关键词 rare earth elements cemented carbide tool cutting performance cutting mechanism
下载PDF
Machinability of Hastelloy C-276 Using Hot-pressed Sintered Ti(C_7N_3)-based Cermet Cutting Tools 被引量:1
5
作者 XU Kaitao ZOU Bin +3 位作者 HUANG Chuanzhen YAO Yang ZHOU Huijun LIU Zhanqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期599-606,共8页
C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short too... C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm^3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59μm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining. 展开更多
关键词 MACHINABILITY Ti(C7N3) cutting insert tool life surface roughness Hastelloy C-276
下载PDF
A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals 被引量:11
6
作者 Guo Jiang Zhang Jianguo +6 位作者 Pan Yanan Kang Renke Namba Yoshiharu Shore Paul Yue Xiaobin Wang Baorui Guo Dongming 《International Journal of Extreme Manufacturing》 2020年第1期1-23,共23页
Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chem... Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined. 展开更多
关键词 diamond tool ferrous metals wear suppression cutting chemical wear
下载PDF
MULTI-SCALE AND MULTI-PHASE NANOCOMPOSITE CERAMIC TOOLS AND CUTTING PERFORMANCE 被引量:3
7
作者 HUANG Chuanzhen LIU Hanlian +1 位作者 WANG Jun WANG Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期5-7,共3页
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f... An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched. 展开更多
关键词 Multi-scale and multi-phase Ceramic tool material Mechanical properties cutting performance
下载PDF
WEAR AND LIFE OF PCBN TOOLS WHEN DRY-CUTTING BEARING STEEL GCr15 被引量:3
8
作者 Liu Xianli Zhang Zhongmin Li ZhenjiaDepartment of Mechanical Engingeering, Harbin University of Science and Technology,Harbin 150080, ChinaLiu Linjiang Yuan ZhejunJilin University Harbin Institute of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第3期218-221,共4页
The wear forms and reasons of PCBN tools when dry-cutting bearing steel GCr15are studied systematically. The effect law of the workpiece hardness on PCBN tools is gained andtool wearing with the quickest speed at the ... The wear forms and reasons of PCBN tools when dry-cutting bearing steel GCr15are studied systematically. The effect law of the workpiece hardness on PCBN tools is gained andtool wearing with the quickest speed at the workpiece critical hardness is proved. The life equationat two kinds of workpiece hardness demonstrates that the effect of the cutting speed on the PCBNtool life is less than that of carbide tools and ceramic tools. 展开更多
关键词 Dry-cutting PCBN tool tool wear tool life Bearing steel GCR15
下载PDF
Research on the Cutting Performance of Cubic Boron Nitride Tools
9
作者 ZHENG Xiao-hua 1,2, YU Qi-xun 1, LIN Jing 1, LU Ming 2, PANG Si-qin 1 (1. School of Mechanical Engineering and Automation, Beijing Institute of Technology, Beijing 100081, China 2. School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期3-4,共2页
There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and m... There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic compound C 3N 4 with the theory of molecule engineering. According to calculation, it can reach or even exceed the hardness of diamond, so material scientists and technique circles draw their attention to it. A high speed steel twist drill coated with C 3N 4 film is applied to the drilling hole process on steel workpiece in cutting tests, the tool life is increased greatly. When the C 3N 4 film is coated on the cemented carbide inserts, the cutting performance is improved, but is not good enough. The data of mechanical performance and cutting tests about this kind of new tool material is given in this paper, it shows that C 3N 4 has a promising future. The anti-wear ability of cutting tool increases sharply after C 3N 4 being coated on HSS tool. Coated HSS drill also has some benefit after being reground. The tool life prolongs after C 3N 4 being coated on cemented carbide inserts, but is not so long as that of C 3N 4 coated HSS tool. When machining PRCM with C 3N 4 thin-film coated cemented carbide tool, the cutting performance is poor and it is much better when machining PRCM with PCBN, PCD compound plates and CVD thick-film coated cutting tool. Some relative aspects need to be deeply discussed and researched, e.g. the existing coating techniques is not good enough and should be improved in the future, the film thickness should be optimized and try to find out the most effective value, the binding force and mutual effect between coated film and substrate need to be studied furtherly, etc. 展开更多
关键词 ultrahard material carbon nitride cutting tools cutting performance
下载PDF
Wear Patterns and Mechanisms of Cutting Tools in High Speed Face Milling
10
作者 LIU Zhan-qiang, AI Xing, ZHANG Hui, WANG Zun-tong, WAN Yi (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期58-,共1页
High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due... High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes. 展开更多
关键词 cutting tool WEAR high speed machining face milling
下载PDF
Age Strengthening of Grey Cast Iron Alloys for Machine Cutting Tools Production
11
作者 A. I. Opaluwa A. Oyetunji S. O. Seidu 《Journal of Minerals and Materials Characterization and Engineering》 2015年第3期107-117,共11页
This work was carried out with the aim of using alloying and ageing processes to develop new alloys from grey cast iron that will have optimum properties suitable for the manufacturing of machine cutting tools. Four d... This work was carried out with the aim of using alloying and ageing processes to develop new alloys from grey cast iron that will have optimum properties suitable for the manufacturing of machine cutting tools. Four different alloys of grey cast iron with alloying composition of Fe-3% Al-2.5% Cr-2% Mo;Fe-3% Al-2% Cr-2% Mo;Fe-3% Al-2.5% Cr-1.5% Mo and Fe-3% Al-1.5% Cr-2% Mo were produced. The chemical analysis of both as-received base metal and produced alloys was determined using Spetro-CJRO Arc-Spectrometer. The microstructural properties and mechanical properties (hardness, impact toughness and ultimate tensile strength) of the produced alloys were determined for both as-cast samples and aged samples. The results showed that the addition of these alloying elements slightly decreased carbon, silicon and phosphorus content and thereby changed the hypereutectic cast iron to hypoeutectic by reducing the carbon equivalent. Also the morphology of graphite flake was changed as a result of the formation of nitrides and carbides of different phases. The results of the mechanical properties showed that the maximum hardness values obtained for each of the four alloys produced and aged at 300?C are 71.5 HRc, 69 HRc, 66.5 HRc and 65.4 HRc respectively. The maximum values for impact toughness obtained for each of the same produced alloys are 66 J, 63.6 J, 62 J and 60.3 J respectively. Also the maximum ultimate tensile strength values obtained for each of the alloys are 1380 N·mm-2, 1311 N·mm-2, 1260 N·mm-2 and 1190 N·mm-2. Comparing the properties obtained from the produced alloys with those of the commercial cutting tools, it was found that cutting tools manufactured from these produced alloys can compete favourably with cast cobalt tool, high speed steel (HSS) and tool steel. 展开更多
关键词 GREY CAST IRON ALLOYING Elements Ageing cutting tools MICROSTRUCTURES
下载PDF
Research and Development of Ceramic Cutting Tools in China
12
作者 Shen Weiping Ge Changchun Bai Ling Yan Qingzhi 《航空制造技术》 2007年第z1期333-341,共9页
The research and development of various classes of ceramic cutting tools in China are described,because manufacturing efficiency is fundamental to the growth of China's economy.
关键词 CERAMIC cutting tools ALUMINA SILICON NITRIDE
下载PDF
Improvement Properties of the Cutting Tools Using Technical Plasma Treatment
13
作者 Ferkous Embarek Amara Idriss +2 位作者 Djeribaa Abdeldjalil Boughouas Hamlaoui Achour Slimane 《Materials Sciences and Applications》 2011年第10期1465-1470,共6页
In spite of the considerable progress made in the domain of the sciences of materials, cutting tools subjected to an intense abrasive wear and a very high temperature of edge. They record during their use an reduced w... In spite of the considerable progress made in the domain of the sciences of materials, cutting tools subjected to an intense abrasive wear and a very high temperature of edge. They record during their use an reduced working life. The operations of machining on lathe are regularly stopped for replacing these tools, which influences enormously the production process. Indeed, the search the new materials of substitution, remain a domain very coveted, owing to the fact, it belongs to one stake very significant industrial, in particular, in the mechanical domain and its varied sectors. The recourse to the thermal treatments traditional, limiting in an interval, reduces the wear and the excessive consumption of these cutting tools, but the principal concern of the experts and researchers, in the domain of the mechanical engineering, remain posed. The goal of this study is the introduction of the technique of plasmas, as physical phenomenon, for making material of coating at base of titanium nitrides doped at iron, at the different concentrations. To this objective, one magnetron sputtering with plasma was used for the realization of the coatings deposed on the active parts of the cutting tools. During the experimentation, it was noted that the cutting tools which are treated by plasma, subjected to the machining operations on lathe and the hardness tests, presents one improvement of their hardness and a remarkable increase in their lifespan. 展开更多
关键词 cutting tools Plasma NITRIDE TITANIUM DOPING TARGET HARDNESS
下载PDF
Experimentally Characterization of Coated Cutting Tools Life with Applications to Dies Materials
14
作者 Ghazi S. Al-Marahleh 《材料科学与工程(中英文B版)》 2015年第1期87-95,共9页
关键词 模具材料 涂层刀具 刀具寿命 应用实验 表征 加工过程 WC-CO 表面粗糙度
下载PDF
Novel Pretreatment of Hard Metal Substrate for Better Performance of Diamond Coated Cutting Tools
15
作者 LUFan-xiu TANGWei-zhong +3 位作者 MIAOJin-qi HELi-fu LICheng-ming CHENGuang-chao 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期35-40,共6页
A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a r... A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained. 展开更多
关键词 硬金属基底 预处理 金刚石涂层 切割工具
下载PDF
Mathematical Modelling of Cutting Force as the Most Reliable Information Bearer on Cutting Tools Wearing Phenomenon
16
作者 Obrad Spaic Zdravko Krivokapic Rade Ivankovic 《Journal of Mechanics Engineering and Automation》 2013年第12期772-777,共6页
关键词 切削刀具 数学模型 磨损现象 切削力 测量系统 承载 信息 刀具耐用度
下载PDF
Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications 被引量:9
17
作者 T.Sampath Kumar S.Balasivanandha Prabu +1 位作者 Geetha Manivasagam K.A.Padmanabhan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期796-805,共10页
Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were charac... Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM micrographs revealed that the AlrN and AlCrN/TiAlN coatings were uniform and highly dense and contained only a limited number of microvoids. The TiAIN coating was non-uniform and highly porous and contained more micro droplets. The hardness and scratch resistance of the specimens were measured using a nanoindentation tester and scratch tester, respectively. Different phases formed in the coatings were analyzed by X-ray diffraction (XRD). The AlCrN/TiAlN coating exhibited a higher hardness (32.75 GPa), a higher Young's modulus (561.97 GPa), and superior scratch resistance (LcN = 46 N) compared to conventional coatings such as TiAlN, A1CrN, and TiN. 展开更多
关键词 cutting tools COATINGS physical vapor deposition characterization NANOINDENTATION
下载PDF
Tool Wear and Its Effect on Surface Roughness in Diamond Cutting of Glass Soda-lime 被引量:7
18
作者 JIA Peng ZHOU Ming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1224-1230,共7页
For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest o... For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass. 展开更多
关键词 diamond cutting tool wear surface roughness soda-lime glass
下载PDF
Dynamic Reliability Sensitivity of Cemented Carbide Cutting Tool 被引量:5
19
作者 WANG Xingang ZHANG Yimin +1 位作者 LI He L Chunmei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期79-85,共7页
Influence of geometric and cutting parameters of cemented carbide cutting tool on reliability of cutting tool has become more and more mature, yet influence of its physical and material parameters on reliability is st... Influence of geometric and cutting parameters of cemented carbide cutting tool on reliability of cutting tool has become more and more mature, yet influence of its physical and material parameters on reliability is still blank. In view of this, cutting test and fatigue crack growth test of YT05 cemented carbide cutting tool are conducted to measure such data as the original crack size, growth size, times of impact loading, number and time of cutting tool in failure, and stress distribution of cutting tool is also obtained by simulating cutting process of tools. Mathematical models on dynamic reliability and dynamic reliability sensitivity of cutting tool are derived respectively by taking machining time and times of impact loading into account, thus change rules of dynamic reliability sensitivity to physical and material parameters can be obtained. Theoretical and experimental results show that sensitive degree on each parameter of tools increases gradually with the increase of machining time and times of impact loading, especially for parameters such as fracture toughness, shape parameter, and cutting stress. This proposed model solves such problems as how to determine the most sensitive parameter and influence degree of physical parameters and material parameters to reliability, which is sensitivity, and can provide theoretical foundation for improving reliability of cutting tool system. 展开更多
关键词 cutting tool dynamic reliability sensitivity critical fatigue stress
下载PDF
Relationship Between Thermal Shock Behavior and Cutting Performance of a Functionally Gradient Ceramic Tool 被引量:6
20
作者 ZHAO Jun, AI Xing, HUANG Xin-ping (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期61-62,共2页
Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in th... Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in this paper, according to which an Al 2O 3-TiC functionally gradient ceramic tool material FG-1 was synthesized by powder-laminating and uniaxially hot-pressing technique. The thermal shock resistance of the Al 2O 3-TiC functionally gradient ceramics FG-1 was evaluated by water quenching and subsequent three-point bending tests of flexural strength diminution. Comparisons were made with results from parallel experiments conducted using a homogeneous Al 2O 3-TiC ceramics. Functionally gradient ceramics exhibited higher retained strength under all thermal shock temperature differences compared to homogeneous ceramics, indicating the higher thermal shock resistance. The experimental results were supported by the calculation of transient thermal stress field. The cutting performance of the Al 2O 3-TiC functionally gradient ceramic tool FG-1 was also investigated in rough turning the cylindrical surface of exhaust valve of diesel engine in comparison with that of a common Al 2O 3-TiC ceramic tool LT55. The results indicated that the tool life of FG-1 increased by 50 percent over that of LT55. Tool life of LT55 was mainly controlled by thermal shock cracking which was accompanied by mechanical shock. While tool life of FG-1 was mainly controlled by mechanical fatigue crack extension rather than thermal shock cracking, revealing the less thermal shock susceptibility of functionally gradient ceramics than that of common ceramics. 展开更多
关键词 functionally gradient materials ceramic tool materials thermal shock resistance transient thermal stress cutting performance
下载PDF
上一页 1 2 221 下一页 到第
使用帮助 返回顶部