Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study th...Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study their behaviors. In this paper, the behavior of hydrogel micro-valves with reverse sensitivity to the p H inside a T-junction flow sorter is investigated. With the fluid-structure interaction(FSI) approach, the effects of various parameters such as the inlet pressure and the p H value on the stress and deformation of the micro-valves are examined, and the results with and without FSI,including the flow rate and the closure p H, are compared. In order to reduce the response time of hydrogels, the effects of three different patterns on the performance of the microvalves are explored. Eventually, it is concluded that FSI is a key influential factor in designing and analyzing the behaviors of hydrogels.展开更多
Magnetic liquid metal droplets(MLMDs)have been proven to be very important in many fields such as flexible electronics and soft robotics.Usually,soft magnetic particles such as nickel(Ni)and iron(Fe)are mixed or suspe...Magnetic liquid metal droplets(MLMDs)have been proven to be very important in many fields such as flexible electronics and soft robotics.Usually,soft magnetic particles such as nickel(Ni)and iron(Fe)are mixed or suspended into the liquid metal to obtain soft MLMDs(S-LMDs),which can be easily manipulated under the magnetic field due to the favorable deformability and flexibility.In addition,hard magnetic particles such as neodymium iron boron(Nd Fe B)with a high residual magnetization can also be dispersed into the liquid metal and the hard MLMDs(H-LMDs)become more compact due to the interaction between internal particles induced by remanence.This work reports a kind of H-LMDs with high surface tension,high flexibility and mechanical robustness,whose electrical conductivity and strength are better than the S-LMDs.Under the magnetic field,the H-LMDs have a faster response time(0.58 s)and a larger actuating velocity(4.45 cm/s)than the S-LMDs.Moreover,the H-LMDs show excellent magnetic controllability,good elasticity and favorable mobility,as demonstrated by magnetically actuated locomotion,bounce tests and rolling angle measurements.Finally,the droplets can be further applied in wheeldriven motors and micro-valve switches,which demonstrates their high application potential in robotic manipulation and microfluidic devices.展开更多
文摘Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study their behaviors. In this paper, the behavior of hydrogel micro-valves with reverse sensitivity to the p H inside a T-junction flow sorter is investigated. With the fluid-structure interaction(FSI) approach, the effects of various parameters such as the inlet pressure and the p H value on the stress and deformation of the micro-valves are examined, and the results with and without FSI,including the flow rate and the closure p H, are compared. In order to reduce the response time of hydrogels, the effects of three different patterns on the performance of the microvalves are explored. Eventually, it is concluded that FSI is a key influential factor in designing and analyzing the behaviors of hydrogels.
基金Financial support from the National Natural Science Foundation of China(Grant Nos.11822209,12072338,11772320)the Fundamental Research Funds for the Central Universities(WK2480000007)+2 种基金Joint Fund of USTC-National Synchrotron Radiation Laboratory(KY2090000055)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB22040502)Thanks to the instrumentation support from engineering practice center of USTC。
文摘Magnetic liquid metal droplets(MLMDs)have been proven to be very important in many fields such as flexible electronics and soft robotics.Usually,soft magnetic particles such as nickel(Ni)and iron(Fe)are mixed or suspended into the liquid metal to obtain soft MLMDs(S-LMDs),which can be easily manipulated under the magnetic field due to the favorable deformability and flexibility.In addition,hard magnetic particles such as neodymium iron boron(Nd Fe B)with a high residual magnetization can also be dispersed into the liquid metal and the hard MLMDs(H-LMDs)become more compact due to the interaction between internal particles induced by remanence.This work reports a kind of H-LMDs with high surface tension,high flexibility and mechanical robustness,whose electrical conductivity and strength are better than the S-LMDs.Under the magnetic field,the H-LMDs have a faster response time(0.58 s)and a larger actuating velocity(4.45 cm/s)than the S-LMDs.Moreover,the H-LMDs show excellent magnetic controllability,good elasticity and favorable mobility,as demonstrated by magnetically actuated locomotion,bounce tests and rolling angle measurements.Finally,the droplets can be further applied in wheeldriven motors and micro-valve switches,which demonstrates their high application potential in robotic manipulation and microfluidic devices.