A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ...A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.展开更多
The differential cubature solution to the problem of a Mindlin plate lying on the Winkler foundation with two simply supported edges and two clamped edges was derived.Discrete numerical technology and shape functions ...The differential cubature solution to the problem of a Mindlin plate lying on the Winkler foundation with two simply supported edges and two clamped edges was derived.Discrete numerical technology and shape functions were used to ensure that the solution is suitable to irregular shaped plates.Then,the mechanical model and the solution were employed to model the protection layer that isolates the mining stopes from sea water in Sanshandao gold mine,which is the first subsea mine of China.Furthermore,thickness optimizations for the protection layers above each stope were conducted based on the maximum principle stress criterion,and the linear relations between the best protection layer thickness and the stope area under different safety factors were regressed to guide the isolation design.The method presented in this work provides a practical way to quickly design the isolation layer thickness in subsea mining.展开更多
The concept of local resonance phononic crystals proposed in recent years provides a new chance for theoretical and technical breakthroughs in the structural vibration reduction.In this paper,a novel sandwich-like pla...The concept of local resonance phononic crystals proposed in recent years provides a new chance for theoretical and technical breakthroughs in the structural vibration reduction.In this paper,a novel sandwich-like plate model with local resonator to acquire specific low-frequency bandgaps is proposed.The core layer of the present local resonator is composed by the simply supported overhanging beam,linear spring and mass block,and well connected with the upper and lower surface panels.The simply supported overhanging beam is free at right end,and an additional linear spring is added at the left end.The wave equation is established based on the Hamilton principle,and the bending wave bandgap is further obtained.The theoretical results are verified by the COMSOL finite element software.The bandgaps and vibration characteristics of the local resonance sandwich-like plate are studied in detail.The factors which could have effects on the bandgap characteristics,such as the structural damping,mass of vibrator,position of vibrator,bending stiffness of the beam,and the boundary conditions of the sandwich-like plates,are analyzed.The result shows that the stopband is determined by the natural frequency of the resonator,the mass ratio of the resonator,and the surface panel.It shows that the width of bandgap is greatly affected by the damping ratio of the resonator.Finally,it can also be found that the boundary conditions can affect the isolation efficiency.展开更多
For estimating the vibration transmission accurately and performing vibration control efficiently in isolation systems, a novel general model is presented to predict the power flow transmitted into the complicate flex...For estimating the vibration transmission accurately and performing vibration control efficiently in isolation systems, a novel general model is presented to predict the power flow transmitted into the complicate flexible bases of laminated beams. In the model, the laminated beam bases are simulated by the first-order shear deformation laminated plate theory, which is relatively simple and economic but accurate in predicting the vibration solutions of flexible isolation systems with laminated beam bases in comparison with classical laminated beam theories and higher order theories. On the basis of the presented model, substructure technique and variational principle are employed to obtain the governing equation of the isolation system and the power flow solution. Then, the vibration characteristics of the flexible isolation systems with laminated bases are investigated. Several numerical examples are given to show the validity and efficiency of the presented model. It is concluded that the presented model is the extension of the classical one and it can obtain more accurate power flow solutions.展开更多
Micro-vibration is an important factor affecting the imaging quality and pointing accu-racy of the in-orbit satellites.To address the problem of micro-vibration compensation,a general summary for modeling,analysis,sup...Micro-vibration is an important factor affecting the imaging quality and pointing accu-racy of the in-orbit satellites.To address the problem of micro-vibration compensation,a general summary for modeling,analysis,suppression,and compensation approach should be outlined.In this review,micro-vibration characteristics and its impacts on the payloads are firstly analyzed.Afterwards,methods for micro-vibration measurement are provided.In detail,the principles and practical applications of these methods are introduced.Then,advanced technologies for micro-vibration suppression are summarized from micro-vibration source attenuation,transfer path opti-mization and sensitive load isolation.Two approaches have been found to be effective for micro-vibration compensation.The one is the Line-of-Sight(LOS)stabilization assisted with Inertial Ref-erence Unit(IRU).The other is using image restoration technology to remove the blur caused by platform jitter.The compensation technique and research status of the two techniques are reviewed.This work will provide researchers with technical guidelines for micro-vibration suppression.展开更多
Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.M...Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.Methods:The collected soil samples were screened for the isolation of Penicillium chrysogenum(P.chrysogenum) by soil dilution plate.The isolated Penicillium species were further grown in different production media with changes in the carbohydrate source.The extracted penicillin from various isolates was analyzed by HPLC for the efficacy of the product.Further the products were screened with various bacterial species including methicillin resistant Staphylococcus aureus(MRSA).And the work was extended to find the possible action on MRSA,along with characterization using other pathogens.Results:From the various soil and citrus samples used for analysis,only the soil sample from Government General Hospital of Bangalore,India,and Sanjay Gandhi Hospital,Bangalore,India,showed some potential growth of the desired fungi P.chrysogenum.Different production media showed varied range of growth of PenicilUum.Optimum production of penicillin was obtained in maltose which proved maximum zone of inhibition during assay.Characterization of penicillin on pathogens,like wild Escherichia coli strain,Klebsiella spp.,and MRSA,gave quite interesting results such as no activity on the later strain as it is resistant.HPLC data provided the analytical and confirmation details of the penicillin produced.Accordingly,the penicillin produced from the soil sample of Government General Hospital had the high milli absorbance unit of 441.5 mAu compared with that of the penicillin produced from Sanjay Gandhi Hospital sample,8S.S2 mAu.Therefore,there was a considerable change in quantity of the penicillin produced from both the samples.Conclusions: The Penicillium spp.could be possibly rich in hospital contaminants and its environments.This research focuses on various unexplored sources of medical ailments,and also shows that the growth of penicillin is high in maltose rich media that could possibly enhance the growth.展开更多
This paper presents an extension of mathematical static model to dynamic problems of micropolar elastic plates, recently developed by the authors. The dynamic model is based on the generalization of Hellinger-Prange-R...This paper presents an extension of mathematical static model to dynamic problems of micropolar elastic plates, recently developed by the authors. The dynamic model is based on the generalization of Hellinger-Prange-Reissner (HPR) variational principle for the linearized micropolar (Cosserat) elastodynamics. The vibration model incorporates high accuracy assumptions of the micropolar plate deformation. The computations predict additional natural frequencies, related with the material microstructure. These results are consistent with the size-effect principle known from the micropolar plate deformation. The classic Mindlin-Reissner plate resonance frequencies appear as a limiting case for homogeneous materials with no microstructure.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52241103 and 52322505)the Natural Science Fund for Distinguished Young Scholars of Hunan Province of China(No.2023JJ10055)。
文摘A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.
基金Projects(51504044,51204100)supported by National Natural Science Foundation of ChinaProject(14KF05)supported by the Research Fund of The State Key Laboratory of Coal Resources and Mine Safety,CUMT,China+3 种基金Project(cstc2016jcyj A1861)supported by the Research Fund of Chongqing Basic Science and Cutting-Edge Technology Special Projects,ChinaProject(2015CDJXY)supported by the Fundamental Research Funds for the Central UniversitiesProject supported by the China Postdoctoral Science FoundationProject(2011DA105287-MS201503)supported by the Independent Subject of State Key Laboratory of Coal Mine Disaster Dynamics and Control,China
文摘The differential cubature solution to the problem of a Mindlin plate lying on the Winkler foundation with two simply supported edges and two clamped edges was derived.Discrete numerical technology and shape functions were used to ensure that the solution is suitable to irregular shaped plates.Then,the mechanical model and the solution were employed to model the protection layer that isolates the mining stopes from sea water in Sanshandao gold mine,which is the first subsea mine of China.Furthermore,thickness optimizations for the protection layers above each stope were conducted based on the maximum principle stress criterion,and the linear relations between the best protection layer thickness and the stope area under different safety factors were regressed to guide the isolation design.The method presented in this work provides a practical way to quickly design the isolation layer thickness in subsea mining.
基金the National Natural Science Foundation of China(Nos.11872127,11832002,11732005)Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University(No.QXTCP A201901)the Project High-Level Innovative Team Building Plan for Beijing Municipal Colleges and Universities(No.IDHT20180513)。
文摘The concept of local resonance phononic crystals proposed in recent years provides a new chance for theoretical and technical breakthroughs in the structural vibration reduction.In this paper,a novel sandwich-like plate model with local resonator to acquire specific low-frequency bandgaps is proposed.The core layer of the present local resonator is composed by the simply supported overhanging beam,linear spring and mass block,and well connected with the upper and lower surface panels.The simply supported overhanging beam is free at right end,and an additional linear spring is added at the left end.The wave equation is established based on the Hamilton principle,and the bending wave bandgap is further obtained.The theoretical results are verified by the COMSOL finite element software.The bandgaps and vibration characteristics of the local resonance sandwich-like plate are studied in detail.The factors which could have effects on the bandgap characteristics,such as the structural damping,mass of vibrator,position of vibrator,bending stiffness of the beam,and the boundary conditions of the sandwich-like plates,are analyzed.The result shows that the stopband is determined by the natural frequency of the resonator,the mass ratio of the resonator,and the surface panel.It shows that the width of bandgap is greatly affected by the damping ratio of the resonator.Finally,it can also be found that the boundary conditions can affect the isolation efficiency.
基金supported by National Natural Science Foundation of China (Grant No. 50805088)China Postdoctoral Science Foundation (No.2004035223)
文摘For estimating the vibration transmission accurately and performing vibration control efficiently in isolation systems, a novel general model is presented to predict the power flow transmitted into the complicate flexible bases of laminated beams. In the model, the laminated beam bases are simulated by the first-order shear deformation laminated plate theory, which is relatively simple and economic but accurate in predicting the vibration solutions of flexible isolation systems with laminated beam bases in comparison with classical laminated beam theories and higher order theories. On the basis of the presented model, substructure technique and variational principle are employed to obtain the governing equation of the isolation system and the power flow solution. Then, the vibration characteristics of the flexible isolation systems with laminated bases are investigated. Several numerical examples are given to show the validity and efficiency of the presented model. It is concluded that the presented model is the extension of the classical one and it can obtain more accurate power flow solutions.
基金supported by the National Natural Science Foundation of China (No.62203322)the China Postdoctoral Science Foundation (No.2022M712372)the Enlisting and Leading Program of the Taihu Laboratory of Deepsea Technological Science,China (No.2022JBGS03001).
文摘Micro-vibration is an important factor affecting the imaging quality and pointing accu-racy of the in-orbit satellites.To address the problem of micro-vibration compensation,a general summary for modeling,analysis,suppression,and compensation approach should be outlined.In this review,micro-vibration characteristics and its impacts on the payloads are firstly analyzed.Afterwards,methods for micro-vibration measurement are provided.In detail,the principles and practical applications of these methods are introduced.Then,advanced technologies for micro-vibration suppression are summarized from micro-vibration source attenuation,transfer path opti-mization and sensitive load isolation.Two approaches have been found to be effective for micro-vibration compensation.The one is the Line-of-Sight(LOS)stabilization assisted with Inertial Ref-erence Unit(IRU).The other is using image restoration technology to remove the blur caused by platform jitter.The compensation technique and research status of the two techniques are reviewed.This work will provide researchers with technical guidelines for micro-vibration suppression.
文摘Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.Methods:The collected soil samples were screened for the isolation of Penicillium chrysogenum(P.chrysogenum) by soil dilution plate.The isolated Penicillium species were further grown in different production media with changes in the carbohydrate source.The extracted penicillin from various isolates was analyzed by HPLC for the efficacy of the product.Further the products were screened with various bacterial species including methicillin resistant Staphylococcus aureus(MRSA).And the work was extended to find the possible action on MRSA,along with characterization using other pathogens.Results:From the various soil and citrus samples used for analysis,only the soil sample from Government General Hospital of Bangalore,India,and Sanjay Gandhi Hospital,Bangalore,India,showed some potential growth of the desired fungi P.chrysogenum.Different production media showed varied range of growth of PenicilUum.Optimum production of penicillin was obtained in maltose which proved maximum zone of inhibition during assay.Characterization of penicillin on pathogens,like wild Escherichia coli strain,Klebsiella spp.,and MRSA,gave quite interesting results such as no activity on the later strain as it is resistant.HPLC data provided the analytical and confirmation details of the penicillin produced.Accordingly,the penicillin produced from the soil sample of Government General Hospital had the high milli absorbance unit of 441.5 mAu compared with that of the penicillin produced from Sanjay Gandhi Hospital sample,8S.S2 mAu.Therefore,there was a considerable change in quantity of the penicillin produced from both the samples.Conclusions: The Penicillium spp.could be possibly rich in hospital contaminants and its environments.This research focuses on various unexplored sources of medical ailments,and also shows that the growth of penicillin is high in maltose rich media that could possibly enhance the growth.
文摘This paper presents an extension of mathematical static model to dynamic problems of micropolar elastic plates, recently developed by the authors. The dynamic model is based on the generalization of Hellinger-Prange-Reissner (HPR) variational principle for the linearized micropolar (Cosserat) elastodynamics. The vibration model incorporates high accuracy assumptions of the micropolar plate deformation. The computations predict additional natural frequencies, related with the material microstructure. These results are consistent with the size-effect principle known from the micropolar plate deformation. The classic Mindlin-Reissner plate resonance frequencies appear as a limiting case for homogeneous materials with no microstructure.