Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT...Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.展开更多
New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochem...New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochemical and compression tests are conducted to assess the feasibility as decomposable material.Morphology,composition,phase and distribution are characterized to investigate decomposition mechanism.Results indicate that floccule,substrate component and reticulate secondary phase are formed on as-prepared surface.Sample also acts out enhanced compression strength to maintain pressure and guarantee stability in dissolution process.Furthermore,as decomposition time and zinc content increase,couple corrosion intensifies,resulting in gradually enhanced decomposition rate.Rapid sample decomposition is mainly due to basal anode dissolution,micro particle exfoliation and poor decomposition resistance of corroding product.Such work shows profound significance in preparing new-type accessible alloy to ensure rapid dissolution of fracturing part and guarantee stable compression strength in oil-gas reservoir exploitation.展开更多
Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus(HCV). H...Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus(HCV). Hepatitis C shows significant genetic variation in the global population, due to the high rate of viral RNA mutation. There are six variants of the virus(HCV genotypes 1, 2, 3, 4, 5, and 6), with 15 recorded subtypes that vary in prevalence across different regions of the world. A variety of devices are used to diagnose hepatitis C, including HCV antibody test, HCV viral load test, HCV genotype test and liver biopsy. Rapid, inexpensive, sensitive, and robust analytical devices are therefore essential for effective diagnosis and monitoring of disease treatment. This review provides an overview of current electrochemical immunosensor and genosensortechnologies employed in HCV detection.There are a limited number of publications showing electrochemical biosensors being used for the detection of HCV.Due to their simplicity,specificity,and reliability,electrochemical biosensor devices have potential clinical applications in several viral infections.展开更多
A portable 4-channel electrochemical noise(EN) test system with high precision was developed.The modular instrument cRIO was used as its core and the signal conditioning module included zero resistance ammeter(ZRA),fl...A portable 4-channel electrochemical noise(EN) test system with high precision was developed.The modular instrument cRIO was used as its core and the signal conditioning module included zero resistance ammeter(ZRA),fly line,screening box and shielded wire.The EN data were acquired from two Q235 carbon steel specimens placed in 0.5 mol/L H2SO4 solution and 0.1 mol/L NaCl solution.The experimental result shows that this system can achieve an accuracy of 10 pA and 10 μV,and it can be applied to on-site multi-channel EN test.展开更多
Some aspects in the designt and development of bipolar Ni/MH battery are presented. After optimizing sealing technique and modifying capacity ratio of two adjacent electrodes in one sub-cell, some bipolar Ni/MH stacks...Some aspects in the designt and development of bipolar Ni/MH battery are presented. After optimizing sealing technique and modifying capacity ratio of two adjacent electrodes in one sub-cell, some bipolar Ni/MH stacks with 6 sub-cells have been assembled and investigated. Electrochemical testing results show the bipolar battery has excellent high rate discharge capability and fast recharge ability, artd satisfactory charging efficiency in different states of charge. Moreover, the hattery also displays good stability under pulse cycles in simulating hybrid vehicle working oonditions.展开更多
Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone...Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone mixed dosing → electrochemical removal oil → inclined tube removal oil → walnut shell filter, and a set of skid mounted wastewater containing polymer treatment plant was designed and manufactured, which was used for the field test of electrochemical treatment of wastewater containing polymer in offshore oilfield. The result shows that the oil removal rate of the electrochemical treatment process is over 98%, and the synergistic effect is significant especially used in conjunction with water clarifier of BHQ-04. When the amount of water clarifier is 50 - 150 mg/L, the oil content, the median particle diameter and the suspended solids content of the filtered water is 8 - 18 mg/L, 1.9 - 2.26 μm and 1.39 - 2.04 mg/L respectively, which reach the scene water quality standards for water injection.展开更多
In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were i...In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were investigated. Single mineral flotation test was organized to research the effect of pulp pH value on the flotation behavior of galena and jamesonite. Electrochemistry property of the interaction of these two minerals with DDTC was investigated by cyclic voltammetry and Tafel tests. Flotation test shows that the recovery of jamesonite in high alkaline pulp is strongly depressed by lime (Ca(OH)2). The cyclic voltammetry and Tafel tests results show that the interaction between galena and DDTC is an electrochemical process. High pH value has little influence on the interaction between galena and DDTC, while it has great effect on jamesonite due to self-oxidation and specific adsorption of OH^- and CaOH^+ on jamesonite surface. Non-electroactive hydroxyl compound and low-electroconductive calcium compounds cover the surface of jamesonite, which impedes electron transfer and DDTC adsorption, thus leads to very low floatability of jamesonite.展开更多
Coronavirus disease 2019(COVID-19)is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative r...Coronavirus disease 2019(COVID-19)is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now,which is time-consuming and requires expensive instrumentation,and the confirmation of variants relies on further sequencing techniques.Herein,we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid,highly sensitivity and specificity for the detection of SARS-CoV-2 variant.To enhance the sensing capability,gold electrodes are uniformly decorated with electro-deposited gold nanoparticles.Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model,our biosensor exhibits excellent analytical detection limit(50 fM)and high linearity(R2=0.987)over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays.The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system.Furthermore,based on the wireless micro-electrochemical platform,the proposed biosensor reveals promising application ability in point-of-care testing.展开更多
The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, a...The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.展开更多
Electrochemical behavior of dental implant system before and after clinical use(in vivo and in vitro) was researched by using abutment and titanium fixture.To simulate an oral environment,the samples of clinically use...Electrochemical behavior of dental implant system before and after clinical use(in vivo and in vitro) was researched by using abutment and titanium fixture.To simulate an oral environment,the samples of clinically used and non-used implant systems as a working electrode were exposed to artificial saliva at(36.5±1) ℃.Electrochemical tests were carried out using a potentiostat.After electrochemical test,the corrosion morphology of each sample was investigated by FE-SEM and EDS.The corrosion potential and pitting potential of clinically used implant system are lower than those of non-used implant system,and clinically used implant system exhibits a lower range of passivation,indicating a less degree of inherent resistance against chloride ion.The polarization resistance decreases in the case of clinically used implant system,whereas,Rp for clinically non-used implant system increases compared with clinically used implant system.展开更多
Electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) techniques were used to detect stress corrosion cracking(SCC) on 40Cr steel specimens exposed to the acidified chloride solution at ambient. To...Electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) techniques were used to detect stress corrosion cracking(SCC) on 40Cr steel specimens exposed to the acidified chloride solution at ambient. To test these two techniques,slow strain rate tensile(SSRT) tests were performed with 40Cr specimen in the identical corrosive solution at room temperature. In impedance measurements,phase shifts in frequency range from 1 to 1 000 Hz show a clear difference between the stressed and non-stressed specimens,suggesting that stress corrosion cracks are detected by the impedance measurements. EN signals in the process of SCC were recorded and then analyzed by standard deviation(STD). On the other hand,the mechanical properties,such as maximum tensile strength(MTS) and fracture strain(FS) measured by the SSRT,decrease significantly when the specimens are exposed to the corrosive solution relative to that in an inert medium. The SSRT results are consistent with fractography of the tested specimens by scanning electron microscopy(SEM). Analysis of the fracture surface clearly shows intergranular attack,suggesting that stress corrosion cracks are formed.展开更多
The effect of heat treatment on the electrochemical and mechanical properties of SS400 steel was investigated, and the effects of annealing conditions on notched specimens subjected to the slow strain rate test (SSRT)...The effect of heat treatment on the electrochemical and mechanical properties of SS400 steel was investigated, and the effects of annealing conditions on notched specimens subjected to the slow strain rate test (SSRT) were studied. The results show that no correlations are observed among the maximum tensile strength, yield strength, and stress corrosion cracking. In contrast, the elongation and time-to-fracture are improved with stress-relieving annealing compared with the as-received condition. The elongation, time-to-fracture, and number of dimples increase with annealing heat treatment.展开更多
基金supported by the National Research Foundation of Korea(No.2021R1A2B5B03001691).
文摘Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.
基金supported by the National Natural Science Foundation of China(No.51905417)China Postdoctoral Science Foundation(No.2020M670306).
文摘New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochemical and compression tests are conducted to assess the feasibility as decomposable material.Morphology,composition,phase and distribution are characterized to investigate decomposition mechanism.Results indicate that floccule,substrate component and reticulate secondary phase are formed on as-prepared surface.Sample also acts out enhanced compression strength to maintain pressure and guarantee stability in dissolution process.Furthermore,as decomposition time and zinc content increase,couple corrosion intensifies,resulting in gradually enhanced decomposition rate.Rapid sample decomposition is mainly due to basal anode dissolution,micro particle exfoliation and poor decomposition resistance of corroding product.Such work shows profound significance in preparing new-type accessible alloy to ensure rapid dissolution of fracturing part and guarantee stable compression strength in oil-gas reservoir exploitation.
基金Supported by Brazilian funding agencies(Sao Paulo Research Foundation-FAPESP and National Council for Scientific and Technological Development-CNPq)
文摘Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus(HCV). Hepatitis C shows significant genetic variation in the global population, due to the high rate of viral RNA mutation. There are six variants of the virus(HCV genotypes 1, 2, 3, 4, 5, and 6), with 15 recorded subtypes that vary in prevalence across different regions of the world. A variety of devices are used to diagnose hepatitis C, including HCV antibody test, HCV viral load test, HCV genotype test and liver biopsy. Rapid, inexpensive, sensitive, and robust analytical devices are therefore essential for effective diagnosis and monitoring of disease treatment. This review provides an overview of current electrochemical immunosensor and genosensortechnologies employed in HCV detection.There are a limited number of publications showing electrochemical biosensors being used for the detection of HCV.Due to their simplicity,specificity,and reliability,electrochemical biosensor devices have potential clinical applications in several viral infections.
基金Supported by the National Basic Research Program of China("973"Program,No.2011CB610505)National Natural Science Foundation of China(No.61240038)
文摘A portable 4-channel electrochemical noise(EN) test system with high precision was developed.The modular instrument cRIO was used as its core and the signal conditioning module included zero resistance ammeter(ZRA),fly line,screening box and shielded wire.The EN data were acquired from two Q235 carbon steel specimens placed in 0.5 mol/L H2SO4 solution and 0.1 mol/L NaCl solution.The experimental result shows that this system can achieve an accuracy of 10 pA and 10 μV,and it can be applied to on-site multi-channel EN test.
文摘Some aspects in the designt and development of bipolar Ni/MH battery are presented. After optimizing sealing technique and modifying capacity ratio of two adjacent electrodes in one sub-cell, some bipolar Ni/MH stacks with 6 sub-cells have been assembled and investigated. Electrochemical testing results show the bipolar battery has excellent high rate discharge capability and fast recharge ability, artd satisfactory charging efficiency in different states of charge. Moreover, the hattery also displays good stability under pulse cycles in simulating hybrid vehicle working oonditions.
文摘Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone mixed dosing → electrochemical removal oil → inclined tube removal oil → walnut shell filter, and a set of skid mounted wastewater containing polymer treatment plant was designed and manufactured, which was used for the field test of electrochemical treatment of wastewater containing polymer in offshore oilfield. The result shows that the oil removal rate of the electrochemical treatment process is over 98%, and the synergistic effect is significant especially used in conjunction with water clarifier of BHQ-04. When the amount of water clarifier is 50 - 150 mg/L, the oil content, the median particle diameter and the suspended solids content of the filtered water is 8 - 18 mg/L, 1.9 - 2.26 μm and 1.39 - 2.04 mg/L respectively, which reach the scene water quality standards for water injection.
基金Projects(5110417951374247)supported by the National Natural Science Foundation of China
文摘In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were investigated. Single mineral flotation test was organized to research the effect of pulp pH value on the flotation behavior of galena and jamesonite. Electrochemistry property of the interaction of these two minerals with DDTC was investigated by cyclic voltammetry and Tafel tests. Flotation test shows that the recovery of jamesonite in high alkaline pulp is strongly depressed by lime (Ca(OH)2). The cyclic voltammetry and Tafel tests results show that the interaction between galena and DDTC is an electrochemical process. High pH value has little influence on the interaction between galena and DDTC, while it has great effect on jamesonite due to self-oxidation and specific adsorption of OH^- and CaOH^+ on jamesonite surface. Non-electroactive hydroxyl compound and low-electroconductive calcium compounds cover the surface of jamesonite, which impedes electron transfer and DDTC adsorption, thus leads to very low floatability of jamesonite.
基金support from the Innovation Team Project of Department of Education of Guangdong Province(No.2018KCXTD026)Guangdong Scientific and Technological Project(2019B1515120043,2020A151501612,2021A1515220109,2022B1515020093)+1 种基金Science and Technology Innovation Commission of Shenzhen(Grant No.KCXFZ20201221173413038)Longhua District Science and Innovation Commission Project Grants of Shenzhen(JCYJ201904).
文摘Coronavirus disease 2019(COVID-19)is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now,which is time-consuming and requires expensive instrumentation,and the confirmation of variants relies on further sequencing techniques.Herein,we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid,highly sensitivity and specificity for the detection of SARS-CoV-2 variant.To enhance the sensing capability,gold electrodes are uniformly decorated with electro-deposited gold nanoparticles.Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model,our biosensor exhibits excellent analytical detection limit(50 fM)and high linearity(R2=0.987)over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays.The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system.Furthermore,based on the wireless micro-electrochemical platform,the proposed biosensor reveals promising application ability in point-of-care testing.
基金financially supported by the Major State Basic Research Development Program of China (No. 2014CB643300)
文摘The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.
文摘Electrochemical behavior of dental implant system before and after clinical use(in vivo and in vitro) was researched by using abutment and titanium fixture.To simulate an oral environment,the samples of clinically used and non-used implant systems as a working electrode were exposed to artificial saliva at(36.5±1) ℃.Electrochemical tests were carried out using a potentiostat.After electrochemical test,the corrosion morphology of each sample was investigated by FE-SEM and EDS.The corrosion potential and pitting potential of clinically used implant system are lower than those of non-used implant system,and clinically used implant system exhibits a lower range of passivation,indicating a less degree of inherent resistance against chloride ion.The polarization resistance decreases in the case of clinically used implant system,whereas,Rp for clinically non-used implant system increases compared with clinically used implant system.
文摘Electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) techniques were used to detect stress corrosion cracking(SCC) on 40Cr steel specimens exposed to the acidified chloride solution at ambient. To test these two techniques,slow strain rate tensile(SSRT) tests were performed with 40Cr specimen in the identical corrosive solution at room temperature. In impedance measurements,phase shifts in frequency range from 1 to 1 000 Hz show a clear difference between the stressed and non-stressed specimens,suggesting that stress corrosion cracks are detected by the impedance measurements. EN signals in the process of SCC were recorded and then analyzed by standard deviation(STD). On the other hand,the mechanical properties,such as maximum tensile strength(MTS) and fracture strain(FS) measured by the SSRT,decrease significantly when the specimens are exposed to the corrosive solution relative to that in an inert medium. The SSRT results are consistent with fractography of the tested specimens by scanning electron microscopy(SEM). Analysis of the fracture surface clearly shows intergranular attack,suggesting that stress corrosion cracks are formed.
文摘The effect of heat treatment on the electrochemical and mechanical properties of SS400 steel was investigated, and the effects of annealing conditions on notched specimens subjected to the slow strain rate test (SSRT) were studied. The results show that no correlations are observed among the maximum tensile strength, yield strength, and stress corrosion cracking. In contrast, the elongation and time-to-fracture are improved with stress-relieving annealing compared with the as-received condition. The elongation, time-to-fracture, and number of dimples increase with annealing heat treatment.