BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated ...BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated and multifactorial;Therefore,sensitive and specific biomarkers are needed.Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney.The microRNAs(miRNAs)in urinary exosome are remark-ably stable and highly tissue-specific for the kidney.METHODS Type 2 diabetic mellitus(T2DM)patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups:DM,diabetic pa-tients without albuminuria[urinary albumin to creatinine ratio(UACR)<30 mg/g]and DKD,diabetic patients with albuminuria(UACR≥30 mg/g).Healthy subjects were the normal control(NC)group.Urinary exosomal miR-145-5p,miR-27a-3p,and miR-29c-3p,were detected using real-time quantitative polymerase chain reaction.The correlation between exosomal miRNAs and the clinical in-dexes was evaluated.The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic(ROC)analysis.Biological functions of miR-145-5p were investigated by performing RESULTS Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group(miR-145-5p:4.54±1.45 vs 1.95±0.93,P<0.001;miR-27a-3p:2.33±0.79 vs 1.71±0.76,P<0.05)and the NC group(miR-145-5p:4.54±1.45 vs 1.55±0.83,P<0.001;miR-27a-3p:2.33±0.79 vs 1.10±0.51,P<0.001).The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate.miR-27a-3p was also closely related to blood glucose,gly-cosylated hemoglobin A1c,and low-density lipoprotein cholesterol.ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88[95%confidence interval(CI):0.784-0.985,P<0.0001]in diagnosing DKD than miR-27a-3p with 0.71(95%CI:0.547-0.871,P=0.0239).Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament,cytoskeleton,and extracellular exosome and were involved in the pathological processes of DKD,including apoptosis,inflammation,and fibrosis.CONCLUSION Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.展开更多
AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are r...AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are regulated,and whether this pathway could be specifically targeted.METHODS:hRPE cells were cultured in normal glucose or high glucose for 1,3,or 6d before measuring cellular proliferation rates using cell counting kit-8 and reactive oxygen species(ROS)levels using a dihydroethidium kit.miR-27b-3p,Nrf2,NAD(P)H quinone oxidoreductase 1(NQO1)and heme oxygenase-1(HO-1)mRNA and protein levels were analyzed using reverse transcription quantitative polymerase chain reaction(RT-qPCR)and immunocytofluorescence(ICF),respectively.Western blot analyses were performed to determine nuclear and total Nrf2 protein levels.Nrf2,NQO1,and HO-1 expression levels by RT-qPCR,ICF,or Western blot were further tested after miR-27b-3p overexpression or inhibitor lentiviral transfection.Finally,the expression level of those target genes was analyzed after treating hRPE cells with pyridoxamine.RESULTS:Persistent exposure to high glucose gradually suppressed hRPE Nrf2,NQO1,and HO-1 mRNA and protein levels and increased miR-27b-3p mRNA levels.High glucose also promoted ROS release and inhibited cellular proliferation.Nrf2,NQO1,and HO-1 mRNA levels decreased after miR-27b-3p overexpression and,conversely,both mRNA and protein levels increased after expressing a miR-27b-3p inhibitor.After treating hRPE cells exposed to high glucose with pyridoxamine,ROS levels tended to decreased,proliferation rate increased,Nrf2,NQO1,and HO-1 mRNA and protein levels were upregulated,and miR-27b-3p mRNA levels were suppressed.CONCLUSION:Nrf2 is a downstream target of miR-27b-3p.Furthermore,the miR-27b-3p inhibitor pyridoxamine can alleviate high glucose injury by regulating the miR-27b-3p/Nrf2 axis.展开更多
基金Supported by the Nature Science Foundation of Hebei Province,No.H2023104011.
文摘BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated and multifactorial;Therefore,sensitive and specific biomarkers are needed.Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney.The microRNAs(miRNAs)in urinary exosome are remark-ably stable and highly tissue-specific for the kidney.METHODS Type 2 diabetic mellitus(T2DM)patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups:DM,diabetic pa-tients without albuminuria[urinary albumin to creatinine ratio(UACR)<30 mg/g]and DKD,diabetic patients with albuminuria(UACR≥30 mg/g).Healthy subjects were the normal control(NC)group.Urinary exosomal miR-145-5p,miR-27a-3p,and miR-29c-3p,were detected using real-time quantitative polymerase chain reaction.The correlation between exosomal miRNAs and the clinical in-dexes was evaluated.The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic(ROC)analysis.Biological functions of miR-145-5p were investigated by performing RESULTS Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group(miR-145-5p:4.54±1.45 vs 1.95±0.93,P<0.001;miR-27a-3p:2.33±0.79 vs 1.71±0.76,P<0.05)and the NC group(miR-145-5p:4.54±1.45 vs 1.55±0.83,P<0.001;miR-27a-3p:2.33±0.79 vs 1.10±0.51,P<0.001).The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate.miR-27a-3p was also closely related to blood glucose,gly-cosylated hemoglobin A1c,and low-density lipoprotein cholesterol.ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88[95%confidence interval(CI):0.784-0.985,P<0.0001]in diagnosing DKD than miR-27a-3p with 0.71(95%CI:0.547-0.871,P=0.0239).Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament,cytoskeleton,and extracellular exosome and were involved in the pathological processes of DKD,including apoptosis,inflammation,and fibrosis.CONCLUSION Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.
基金Supported by National Natural Science Foundation of China(No.2020J01652)the Training Project for Young and Middleaged Core Talents in Health System of Fujian Province(No.2016-ZQN-62).
文摘AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are regulated,and whether this pathway could be specifically targeted.METHODS:hRPE cells were cultured in normal glucose or high glucose for 1,3,or 6d before measuring cellular proliferation rates using cell counting kit-8 and reactive oxygen species(ROS)levels using a dihydroethidium kit.miR-27b-3p,Nrf2,NAD(P)H quinone oxidoreductase 1(NQO1)and heme oxygenase-1(HO-1)mRNA and protein levels were analyzed using reverse transcription quantitative polymerase chain reaction(RT-qPCR)and immunocytofluorescence(ICF),respectively.Western blot analyses were performed to determine nuclear and total Nrf2 protein levels.Nrf2,NQO1,and HO-1 expression levels by RT-qPCR,ICF,or Western blot were further tested after miR-27b-3p overexpression or inhibitor lentiviral transfection.Finally,the expression level of those target genes was analyzed after treating hRPE cells with pyridoxamine.RESULTS:Persistent exposure to high glucose gradually suppressed hRPE Nrf2,NQO1,and HO-1 mRNA and protein levels and increased miR-27b-3p mRNA levels.High glucose also promoted ROS release and inhibited cellular proliferation.Nrf2,NQO1,and HO-1 mRNA levels decreased after miR-27b-3p overexpression and,conversely,both mRNA and protein levels increased after expressing a miR-27b-3p inhibitor.After treating hRPE cells exposed to high glucose with pyridoxamine,ROS levels tended to decreased,proliferation rate increased,Nrf2,NQO1,and HO-1 mRNA and protein levels were upregulated,and miR-27b-3p mRNA levels were suppressed.CONCLUSION:Nrf2 is a downstream target of miR-27b-3p.Furthermore,the miR-27b-3p inhibitor pyridoxamine can alleviate high glucose injury by regulating the miR-27b-3p/Nrf2 axis.