BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated ...BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated and multifactorial;Therefore,sensitive and specific biomarkers are needed.Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney.The microRNAs(miRNAs)in urinary exosome are remark-ably stable and highly tissue-specific for the kidney.METHODS Type 2 diabetic mellitus(T2DM)patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups:DM,diabetic pa-tients without albuminuria[urinary albumin to creatinine ratio(UACR)<30 mg/g]and DKD,diabetic patients with albuminuria(UACR≥30 mg/g).Healthy subjects were the normal control(NC)group.Urinary exosomal miR-145-5p,miR-27a-3p,and miR-29c-3p,were detected using real-time quantitative polymerase chain reaction.The correlation between exosomal miRNAs and the clinical in-dexes was evaluated.The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic(ROC)analysis.Biological functions of miR-145-5p were investigated by performing RESULTS Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group(miR-145-5p:4.54±1.45 vs 1.95±0.93,P<0.001;miR-27a-3p:2.33±0.79 vs 1.71±0.76,P<0.05)and the NC group(miR-145-5p:4.54±1.45 vs 1.55±0.83,P<0.001;miR-27a-3p:2.33±0.79 vs 1.10±0.51,P<0.001).The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate.miR-27a-3p was also closely related to blood glucose,gly-cosylated hemoglobin A1c,and low-density lipoprotein cholesterol.ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88[95%confidence interval(CI):0.784-0.985,P<0.0001]in diagnosing DKD than miR-27a-3p with 0.71(95%CI:0.547-0.871,P=0.0239).Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament,cytoskeleton,and extracellular exosome and were involved in the pathological processes of DKD,including apoptosis,inflammation,and fibrosis.CONCLUSION Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.展开更多
BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC...BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC).AIM To investigate the role and molecular mechanism of miRNA-145-5p(miR145-5p)in the progression of GC.METHODS Real-time polymerase chain reaction(RT-PCR)was used to detect miRNA expression in human GC tissues and cells.The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays,respectively.Cell proliferation was measured using cell counting kit-8 and colony formation assays,and apoptosis was evaluated using flow cytometry.Expression of the epithelial-mesenchymal transition(EMT)-associated protein was determined by Western blot.Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system.Serpin family E member 1(SERPINE1)expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining.The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis.The association between SERPINE1 and GC progression was also tested.A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p.The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice.RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA.Overexpression of miR-145-5p was associated with decreased GC cell proliferation,invasion,migration,and EMT,and these effects were reversed by forcing SERPINE1 expression.Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression.Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2(ERK1/2).CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC.MiR-145-5p was found to affect GC cell proliferation,migration,and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.展开更多
Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeut...Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.展开更多
BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patie...BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.展开更多
Objective Gastrointestinal stromal tumors(GISTs)can rapidly proliferate through angiogenesis.Previous studies indicated the potential influence of microRNA on the progression of tumor immature angiogenesis.This study ...Objective Gastrointestinal stromal tumors(GISTs)can rapidly proliferate through angiogenesis.Previous studies indicated the potential influence of microRNA on the progression of tumor immature angiogenesis.This study aimed to explore the specific mechanism by which microRNA-409-5p(miR-409-5p)contributes to GIST.Methods To identify genes potentially involved in the development and progression of GIST,the differences of miR-409-5p between tumors and adjacent tissues were first analyzed.Following this analysis,target genes were predicted.To further investigate the function of miRNA in GIST cells,two GIST cell lines(GIST-T1 and GIST882)were transfected with lentiviruses that stably expressed miR-409-5p and scrambled miRNA(negative control).Later,the cells were subjected to Western blotting and ELSA to determine any differences in angiogenesis-related genes.Results In GISTs,there was a decrease in the expression levels of miR-409-5p compared to the adjacent tissues.It was observed that the upregulation of miR-409-5p in GIST cell lines effectively inhibited the proteins hypoxia-inducible transcription factor 1β(HIF1β)and vascular endothelial growth factor A(VEGF-A).Further investigations revealed that miR-409-5p acted as an inhibitor of angiogenesis by binding to the 3′-UTR of Lysine-specific demethylase 4D(KDM4D)mRNA.Moreover,the combination of miR-409-5p with imatinib enhanced its inhibitory effect on angiogenesis.Conclusion This study demonstrated that the miRNA-409-5p/KDM4D/HIF1β/VEGF-A signaling pathway could serve as a novel target for the development of therapeutic strategies for the treatment of imatinib-resistance in GIST patients.展开更多
基金Supported by the Nature Science Foundation of Hebei Province,No.H2023104011.
文摘BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated and multifactorial;Therefore,sensitive and specific biomarkers are needed.Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney.The microRNAs(miRNAs)in urinary exosome are remark-ably stable and highly tissue-specific for the kidney.METHODS Type 2 diabetic mellitus(T2DM)patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups:DM,diabetic pa-tients without albuminuria[urinary albumin to creatinine ratio(UACR)<30 mg/g]and DKD,diabetic patients with albuminuria(UACR≥30 mg/g).Healthy subjects were the normal control(NC)group.Urinary exosomal miR-145-5p,miR-27a-3p,and miR-29c-3p,were detected using real-time quantitative polymerase chain reaction.The correlation between exosomal miRNAs and the clinical in-dexes was evaluated.The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic(ROC)analysis.Biological functions of miR-145-5p were investigated by performing RESULTS Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group(miR-145-5p:4.54±1.45 vs 1.95±0.93,P<0.001;miR-27a-3p:2.33±0.79 vs 1.71±0.76,P<0.05)and the NC group(miR-145-5p:4.54±1.45 vs 1.55±0.83,P<0.001;miR-27a-3p:2.33±0.79 vs 1.10±0.51,P<0.001).The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate.miR-27a-3p was also closely related to blood glucose,gly-cosylated hemoglobin A1c,and low-density lipoprotein cholesterol.ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88[95%confidence interval(CI):0.784-0.985,P<0.0001]in diagnosing DKD than miR-27a-3p with 0.71(95%CI:0.547-0.871,P=0.0239).Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament,cytoskeleton,and extracellular exosome and were involved in the pathological processes of DKD,including apoptosis,inflammation,and fibrosis.CONCLUSION Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.
文摘BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC).AIM To investigate the role and molecular mechanism of miRNA-145-5p(miR145-5p)in the progression of GC.METHODS Real-time polymerase chain reaction(RT-PCR)was used to detect miRNA expression in human GC tissues and cells.The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays,respectively.Cell proliferation was measured using cell counting kit-8 and colony formation assays,and apoptosis was evaluated using flow cytometry.Expression of the epithelial-mesenchymal transition(EMT)-associated protein was determined by Western blot.Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system.Serpin family E member 1(SERPINE1)expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining.The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis.The association between SERPINE1 and GC progression was also tested.A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p.The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice.RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA.Overexpression of miR-145-5p was associated with decreased GC cell proliferation,invasion,migration,and EMT,and these effects were reversed by forcing SERPINE1 expression.Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression.Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2(ERK1/2).CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC.MiR-145-5p was found to affect GC cell proliferation,migration,and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.
文摘Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.
基金Supported by the National Natural Science Foundation of China,No.81900743Heilongjiang Province Outstanding Young Medical Talents Training Grant Project,China,No.HYD2020YQ0007.
文摘BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.
基金supported by the National Natural Science Foundation of China(No.81372323 and No.81802426).
文摘Objective Gastrointestinal stromal tumors(GISTs)can rapidly proliferate through angiogenesis.Previous studies indicated the potential influence of microRNA on the progression of tumor immature angiogenesis.This study aimed to explore the specific mechanism by which microRNA-409-5p(miR-409-5p)contributes to GIST.Methods To identify genes potentially involved in the development and progression of GIST,the differences of miR-409-5p between tumors and adjacent tissues were first analyzed.Following this analysis,target genes were predicted.To further investigate the function of miRNA in GIST cells,two GIST cell lines(GIST-T1 and GIST882)were transfected with lentiviruses that stably expressed miR-409-5p and scrambled miRNA(negative control).Later,the cells were subjected to Western blotting and ELSA to determine any differences in angiogenesis-related genes.Results In GISTs,there was a decrease in the expression levels of miR-409-5p compared to the adjacent tissues.It was observed that the upregulation of miR-409-5p in GIST cell lines effectively inhibited the proteins hypoxia-inducible transcription factor 1β(HIF1β)and vascular endothelial growth factor A(VEGF-A).Further investigations revealed that miR-409-5p acted as an inhibitor of angiogenesis by binding to the 3′-UTR of Lysine-specific demethylase 4D(KDM4D)mRNA.Moreover,the combination of miR-409-5p with imatinib enhanced its inhibitory effect on angiogenesis.Conclusion This study demonstrated that the miRNA-409-5p/KDM4D/HIF1β/VEGF-A signaling pathway could serve as a novel target for the development of therapeutic strategies for the treatment of imatinib-resistance in GIST patients.