AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are r...AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are regulated,and whether this pathway could be specifically targeted.METHODS:hRPE cells were cultured in normal glucose or high glucose for 1,3,or 6d before measuring cellular proliferation rates using cell counting kit-8 and reactive oxygen species(ROS)levels using a dihydroethidium kit.miR-27b-3p,Nrf2,NAD(P)H quinone oxidoreductase 1(NQO1)and heme oxygenase-1(HO-1)mRNA and protein levels were analyzed using reverse transcription quantitative polymerase chain reaction(RT-qPCR)and immunocytofluorescence(ICF),respectively.Western blot analyses were performed to determine nuclear and total Nrf2 protein levels.Nrf2,NQO1,and HO-1 expression levels by RT-qPCR,ICF,or Western blot were further tested after miR-27b-3p overexpression or inhibitor lentiviral transfection.Finally,the expression level of those target genes was analyzed after treating hRPE cells with pyridoxamine.RESULTS:Persistent exposure to high glucose gradually suppressed hRPE Nrf2,NQO1,and HO-1 mRNA and protein levels and increased miR-27b-3p mRNA levels.High glucose also promoted ROS release and inhibited cellular proliferation.Nrf2,NQO1,and HO-1 mRNA levels decreased after miR-27b-3p overexpression and,conversely,both mRNA and protein levels increased after expressing a miR-27b-3p inhibitor.After treating hRPE cells exposed to high glucose with pyridoxamine,ROS levels tended to decreased,proliferation rate increased,Nrf2,NQO1,and HO-1 mRNA and protein levels were upregulated,and miR-27b-3p mRNA levels were suppressed.CONCLUSION:Nrf2 is a downstream target of miR-27b-3p.Furthermore,the miR-27b-3p inhibitor pyridoxamine can alleviate high glucose injury by regulating the miR-27b-3p/Nrf2 axis.展开更多
目的探讨催产素(oxytocin,OXT)对卵巢癌细胞增殖与凋亡的影响及其作用机制。方法人卵巢癌细胞系SKOV3和A2780细胞来源于美国模式培养物保藏所(ATCC)。OXT和OXT受体(oxytocin receptor,OXTR)拮抗剂Atosiban刺激卵巢癌细胞,改变细胞中miR-...目的探讨催产素(oxytocin,OXT)对卵巢癌细胞增殖与凋亡的影响及其作用机制。方法人卵巢癌细胞系SKOV3和A2780细胞来源于美国模式培养物保藏所(ATCC)。OXT和OXT受体(oxytocin receptor,OXTR)拮抗剂Atosiban刺激卵巢癌细胞,改变细胞中miR-196b-3p的水平,使用MTT法、ELISA试验、Western blot、生物信息学工具及荧光素酶报告基因实验等研究以上处理对卵巢癌细胞增殖与凋亡的作用和机制。结果OXT刺激SKOV3细胞OXTR激活(F=28.842,P<0.05),增殖活性降低(F=12.988,P<0.05),Caspase3活性增加(F=26.676,P<0.05);Ki67、增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)及p53凋亡刺激蛋白抑制剂(inhibitor of apoptosis-stimulating of p53 protein,iASPP)表达下调,p53凋亡刺激蛋白(apoptosis-stimulating of p53 protein,ASPP)1(ASPP1)及2(ASPP2)表达上调;但Atosiban部分逆转OXT的效果。OXT刺激卵巢癌细胞miR-196b-3p水平减少(A2780:F=76.406,P<0.05;SKOV3:F=45.874,P<0.05)。miR-196b-3p-mimic转染联合OXT刺激,导致细胞增殖活性增加(F=9.232,P<0.05),Caspase3活性降低(F=36.350,P<0.05),同时ASPP2表达降低(F=83.013,P<0.05)。而miR-196b-3p-inhibitor转染联合OXT刺激,ASPP2表达增加(F=83.013,P<0.05)。生物信息学工具预测联合荧光素酶报告基因实验确认ASPP2是miR-196b-3p的靶基因。结论OXT介导的OXTR激活通过调节miR-196b-3p/ASPP2信号通路调节卵巢癌细胞生长。展开更多
BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(X...BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.展开更多
Background:Long non-coding RNA(lncRNA)actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1)functions as a competing endogenous RNA to regulate target genes expression by sponging microRNAs(miRs)to play cancer...Background:Long non-coding RNA(lncRNA)actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1)functions as a competing endogenous RNA to regulate target genes expression by sponging microRNAs(miRs)to play cancer-promoting roles in cancer stem cells.However,the regulatory mechanism of AFAP1-AS1 in cervical cancer(CC)stem cells is unknown.The present study aimed to provide a new therapeutic target for the clinical treatment of CC.Methods:Hyaluronic acid receptor cluster of differentiation 44 variant exon 6(CD44v6)(+)CC cells were isolated by flow cytometry(FCM).Small interfering RNAs of AFAP1-AS1(siAFAP1-AS1)were transfected into the(CD44v6)(+)cells.The levels of AFAP1-AS1 were measured by quantitative real-time PCR(qRT-PCR).Sphere formation assay,cell cycle analysis,and Western blotting were used to detect the effect of siAFAP1-AS1.RNA pull-down and luciferase reporter assay were used to verify the relationship between miR-27b-3p and AFAP1-AS1 or vascular endothelial growth factor(VEGF)-C.Results:CD44v6(+)CCcells had remarkable stemness and a high level ofAFAP1-AS1.However,AFAP1-AS1knockdownwithsiAFAP1-AS1suppressed the cell cycle transitionofG(1)/S phase and inhibited self-renewal ofCD44v6(+)CCcells,the levels of the stemnessmarkers octamer-binding transcription factor 4(OCT4),osteopontin(OPN),and cluster of differentiation 133(CD133),and the epithelialmesenchymal transition(EMT)-related proteins Twist1,matrix metalloprotease(MMP)-9,and VEGF-C.In the mechanism study,miR-27b-3p/VEGF-C signaling was demonstrated to be a key downstream of AFAP1-AS1 in the CD44v6(+)CC cells.Conclusions:LncRNA AFAP1-AS1 knockdown inhibits the CC cell stemness by upregulating miR-27b-3p to suppress VEGF-C.展开更多
基金Supported by National Natural Science Foundation of China(No.2020J01652)the Training Project for Young and Middleaged Core Talents in Health System of Fujian Province(No.2016-ZQN-62).
文摘AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are regulated,and whether this pathway could be specifically targeted.METHODS:hRPE cells were cultured in normal glucose or high glucose for 1,3,or 6d before measuring cellular proliferation rates using cell counting kit-8 and reactive oxygen species(ROS)levels using a dihydroethidium kit.miR-27b-3p,Nrf2,NAD(P)H quinone oxidoreductase 1(NQO1)and heme oxygenase-1(HO-1)mRNA and protein levels were analyzed using reverse transcription quantitative polymerase chain reaction(RT-qPCR)and immunocytofluorescence(ICF),respectively.Western blot analyses were performed to determine nuclear and total Nrf2 protein levels.Nrf2,NQO1,and HO-1 expression levels by RT-qPCR,ICF,or Western blot were further tested after miR-27b-3p overexpression or inhibitor lentiviral transfection.Finally,the expression level of those target genes was analyzed after treating hRPE cells with pyridoxamine.RESULTS:Persistent exposure to high glucose gradually suppressed hRPE Nrf2,NQO1,and HO-1 mRNA and protein levels and increased miR-27b-3p mRNA levels.High glucose also promoted ROS release and inhibited cellular proliferation.Nrf2,NQO1,and HO-1 mRNA levels decreased after miR-27b-3p overexpression and,conversely,both mRNA and protein levels increased after expressing a miR-27b-3p inhibitor.After treating hRPE cells exposed to high glucose with pyridoxamine,ROS levels tended to decreased,proliferation rate increased,Nrf2,NQO1,and HO-1 mRNA and protein levels were upregulated,and miR-27b-3p mRNA levels were suppressed.CONCLUSION:Nrf2 is a downstream target of miR-27b-3p.Furthermore,the miR-27b-3p inhibitor pyridoxamine can alleviate high glucose injury by regulating the miR-27b-3p/Nrf2 axis.
文摘目的探讨催产素(oxytocin,OXT)对卵巢癌细胞增殖与凋亡的影响及其作用机制。方法人卵巢癌细胞系SKOV3和A2780细胞来源于美国模式培养物保藏所(ATCC)。OXT和OXT受体(oxytocin receptor,OXTR)拮抗剂Atosiban刺激卵巢癌细胞,改变细胞中miR-196b-3p的水平,使用MTT法、ELISA试验、Western blot、生物信息学工具及荧光素酶报告基因实验等研究以上处理对卵巢癌细胞增殖与凋亡的作用和机制。结果OXT刺激SKOV3细胞OXTR激活(F=28.842,P<0.05),增殖活性降低(F=12.988,P<0.05),Caspase3活性增加(F=26.676,P<0.05);Ki67、增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)及p53凋亡刺激蛋白抑制剂(inhibitor of apoptosis-stimulating of p53 protein,iASPP)表达下调,p53凋亡刺激蛋白(apoptosis-stimulating of p53 protein,ASPP)1(ASPP1)及2(ASPP2)表达上调;但Atosiban部分逆转OXT的效果。OXT刺激卵巢癌细胞miR-196b-3p水平减少(A2780:F=76.406,P<0.05;SKOV3:F=45.874,P<0.05)。miR-196b-3p-mimic转染联合OXT刺激,导致细胞增殖活性增加(F=9.232,P<0.05),Caspase3活性降低(F=36.350,P<0.05),同时ASPP2表达降低(F=83.013,P<0.05)。而miR-196b-3p-inhibitor转染联合OXT刺激,ASPP2表达增加(F=83.013,P<0.05)。生物信息学工具预测联合荧光素酶报告基因实验确认ASPP2是miR-196b-3p的靶基因。结论OXT介导的OXTR激活通过调节miR-196b-3p/ASPP2信号通路调节卵巢癌细胞生长。
基金Supported by Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD011)
文摘BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
文摘Background:Long non-coding RNA(lncRNA)actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1)functions as a competing endogenous RNA to regulate target genes expression by sponging microRNAs(miRs)to play cancer-promoting roles in cancer stem cells.However,the regulatory mechanism of AFAP1-AS1 in cervical cancer(CC)stem cells is unknown.The present study aimed to provide a new therapeutic target for the clinical treatment of CC.Methods:Hyaluronic acid receptor cluster of differentiation 44 variant exon 6(CD44v6)(+)CC cells were isolated by flow cytometry(FCM).Small interfering RNAs of AFAP1-AS1(siAFAP1-AS1)were transfected into the(CD44v6)(+)cells.The levels of AFAP1-AS1 were measured by quantitative real-time PCR(qRT-PCR).Sphere formation assay,cell cycle analysis,and Western blotting were used to detect the effect of siAFAP1-AS1.RNA pull-down and luciferase reporter assay were used to verify the relationship between miR-27b-3p and AFAP1-AS1 or vascular endothelial growth factor(VEGF)-C.Results:CD44v6(+)CCcells had remarkable stemness and a high level ofAFAP1-AS1.However,AFAP1-AS1knockdownwithsiAFAP1-AS1suppressed the cell cycle transitionofG(1)/S phase and inhibited self-renewal ofCD44v6(+)CCcells,the levels of the stemnessmarkers octamer-binding transcription factor 4(OCT4),osteopontin(OPN),and cluster of differentiation 133(CD133),and the epithelialmesenchymal transition(EMT)-related proteins Twist1,matrix metalloprotease(MMP)-9,and VEGF-C.In the mechanism study,miR-27b-3p/VEGF-C signaling was demonstrated to be a key downstream of AFAP1-AS1 in the CD44v6(+)CC cells.Conclusions:LncRNA AFAP1-AS1 knockdown inhibits the CC cell stemness by upregulating miR-27b-3p to suppress VEGF-C.