期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Soil Organic Carbon and Its Fractions Across Vegetation Types:Effects of Soil Mineral Surface Area and Microaggregates 被引量:4
1
作者 WU Qing-Biao WANG Xiao-Ke OUYANG Zhi-Yun 《Pedosphere》 SCIE CAS CSCD 2009年第2期258-264,共7页
Soil organic carbon(SOC)can act as a sink or source of atmospheric carbon dioxide;therefore,it is important to understand the amount and composition of SOC in terrestrial ecosystems,the spatial variation in SOC,and th... Soil organic carbon(SOC)can act as a sink or source of atmospheric carbon dioxide;therefore,it is important to understand the amount and composition of SOC in terrestrial ecosystems,the spatial variation in SOC,and the underlying mechanisms that stabilize SOC.In this study,density fractionation and acid hydrolysis were used to assess the spatial variation in SOC,the heavy fraction of organic carbon(HFOC),and the resistant organic carbon(ROC)in soils of the southern Hulun Buir region,northeastern China,and to identify the major factors that contribute to this variation.The results showed that as the contents of clay and silt particles(0–50μm)increased,both methylene blue(MB)adsorption by soil minerals and microaggregate contents increased in the 0–20 and 20–40 cm soil layers(P<0.05).Although varying with vegetation types,SOC,HFOC,and ROC contents increased significantly with the content of clay and silt particles, MB adsorption by soil minerals,and microaggregate content(P<0.05),suggesting that soil texture,the MB adsorption by soil minerals,and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulun Buir region. 展开更多
关键词 carbon fractions MICROAGGREGATES soil mineral surface area soil organic carbon VEGETATION
下载PDF
Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China 被引量:1
2
作者 ZHANG Wen-zhao CHEN Xiao-qin +2 位作者 WANG Huo-yan WEI Wen-xue ZHOU Jian-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第2期521-531,共11页
Soil aggregates are an important controlling factor for the physico-chemical and biological processes such as ammonium(NH;) retention. Straw return to the field is increasingly recommended to promote soil carbon(C) se... Soil aggregates are an important controlling factor for the physico-chemical and biological processes such as ammonium(NH;) retention. Straw return to the field is increasingly recommended to promote soil carbon(C) sequestration and improve crop yields. However, the effects of straw return on NH;retention at soil aggregate level in agricultural soils have seldom been investigated. This study aimed to evaluate the influences of long-term straw return on NH;adsorption and fixation in microaggregates(<0.25 mm) with or without soil organic carbon(SOC) oxidization. Soil samples were collected from plots of three treatments, i.e., no fertilizer(CK), inorganic NPK fertilizers(NPK), and inorganic NPK fertilizers with rice straw return(NPKS), from a 20-year-old field trial with rice-wheat rotations in Taihu Lake Region, China. Soil aggregates were separated using wet-sieving method. The SOC of microaggregates was oxidized by H;O;. The results showed that longterm straw return significantly increased SOC and NH;adsorption, but inhibited NH;fixation in microaggregates. NH;adsorption potential and strength-obtained from adsorption isotherms-increased, but NH;fixation decreased along with increasing SOC in microaggregates, indicating the important role of SOC in NH;adsorption and fixation. This was verified by the SOC oxidization test that showed a relative decrease in NH;adsorption potential for the NPKS treatment and an increase in NH;fixation in all three treatments. Therefore, long-term straw return influences NH;adsorption and fixation by enhancing SOC content and could improve N availability for crop uptake and minimize applied N fertilizer losses in rice-wheat cropping systems. 展开更多
关键词 soil organic carbon MICROAGGREGATES NH4+ adsorption FIXATION
下载PDF
Characteristics of Organo-Mineral Complexing of Microaggregates in Paddy Soils Developed from Purple Soils 被引量:1
3
作者 WEICHAOFU XIEDETI 《Pedosphere》 SCIE CAS CSCD 1996年第4期365-372,共8页
This paper deals with characteristics of organo-mineral complexing of microaggregates in the paddy soils developed from purple soils in Sichuan, China. Results show that the contents of organic matter in microaggregat... This paper deals with characteristics of organo-mineral complexing of microaggregates in the paddy soils developed from purple soils in Sichuan, China. Results show that the contents of organic matter in microaggregates are in the order of 1--0.25 mm > smaller than 0.05 mm > 0.05-0.25 mm. But the organic matter in 1-0.01 mm microaggregates accounts for 68.1%-78.7% of that in soil. The organic matter in<0.05 mm microaggregates is complexed humus on the whole, of which the degree of organo-mineral complexing varies between 96.1% and 99.5%, which is higher than that of the soil or>0.05 mm microaggregates. The contents of loosely combined humus and the ratios of loosely and tightly combined humus markedly decline with the size of microaggregates. Fresh soil humus formed from semi-decomposed organic material or organic manure added is combined first with<0.001 mm clay, and then aggregated with other organic and mineral particles to form larger microaggregates, in which the aging of humus happens at the same time; whereas organic matter of the light fraction is mainly involved in the formation of>0.05 mm microaggregates. 展开更多
关键词 combined humus microaggregate organo-mineral complexing paddy soils from purple soils
下载PDF
Mykert-Sanzheevka Field of Polycomponent Ores (Pb, Zn, Ag, Au, PGE): Geologic-Substance Characteristics and Formation Features of Ore-Forming System 被引量:2
4
作者 Alexander Vasilyevich Tatarinov Lyubov Ilyinichna Yalovik +1 位作者 Anatoly Georgievich Mironov Victor Fedorovich Posokhov 《Geomaterials》 2020年第1期1-23,共23页
The new results of geologic-structural, petrographic and mineralogic-geochemical researches of Mykert-Sanzheevka ore field—the Uda-Vitim mineragenic zone South-West ending of West Transbaikalia are given. Its main or... The new results of geologic-structural, petrographic and mineralogic-geochemical researches of Mykert-Sanzheevka ore field—the Uda-Vitim mineragenic zone South-West ending of West Transbaikalia are given. Its main ore-controlling structure, represented by losange, consisting of rhombohedral and tetrahedral blocks-duplexes mosaic clusters, which are separated by narrow tectonic sutures, is specified. It is clarified that polycomponent ores clusters are confined with these small-block sutures, made by subvolcanic dykes of shoshonite-latite volcano-plutonic association (233 - 188 million years), apodyke dynamometamorphites (breccias, cataclasite, mylonites) and also mechanometasomatites. Four stages of the dynamometamorphites formation characterized by different species compositions of ore minerals appeared as a result of mechanochemical reactions are determined. A carbonyl model of mineral microaggregates formation with films containing noble metal nanoparticles is proposed. Ore-forming system features of Mykert-Sanzheevka field are considered. 展开更多
关键词 Polycomponent ORES Dynamometamorphism Mechanometasomatites Noble Metals MICROAGGREGATES NANOPHASES Trace Minerals ORE-FORMING SYSTEM CARBONYL Compounds Geochemical Microanomalies
下载PDF
SOIL AGGREGATE AND ITS RESPONSE TO LAND MANAGEMENT PRACTICES 被引量:17
5
作者 Chaofu Wei Ming Gao +2 位作者 Jingan Shao Deti Xie Genxing Pan 《China Particuology》 SCIE EI CAS CSCD 2006年第5期211-219,共9页
This paper provides a broad review of the existing study on soil aggregate and its responses to land management practices. Soil aggregate is used for structural unit, which is a group of primary soil particles that co... This paper provides a broad review of the existing study on soil aggregate and its responses to land management practices. Soil aggregate is used for structural unit, which is a group of primary soil particles that cohere to each other more strongly than other surrounding particles. The mechanism of soil particle aggregation may be expressed by a hierarchical model, which is based upon the hypothesis that macroaggregates (〉250μm) are collections of smaller microaggregates (〈250μm) held together with organic binding agents. Primary particles form microaggregates and then macroaggregates. Carbon (C)-rich young plant residues form and stabilize macroaggregates, whereas old organic C is occluded in the microaggregates. The interaction of aggregate dynamics with soil organic carbon (SOC) is complex and embraces a range of spatial and temporal processes within macroaggregates and microaggregates. The nature and properties of aggregates are determined by the quantity and quality of coarse residues and humic compounds and by the degree of their interaction with soil particles. The mechanisms resulting in the binding of primary soil particles into stable aggregates vary with soil parent material, climate, vegetation, and land management practices. Land management practices, including tillage methods, residue management, amendments, and soil fertility management, enhance soil aggregation. However, there is still much uncertainty in the dynamics of organic matter in macroaggregation and microaggregation, and research is still needed to understand further the mechanisms of aggregate formation and its responses to human activities. 展开更多
关键词 soil structure soil aggregate MACROAGGREGATES MICROAGGREGATES SOC land management practices
原文传递
Effects of Tillage Practices and Land Use Management on Soil Aggregates and Soil Organic Carbon in the North Appalachian Region,USA 被引量:11
6
作者 Arun Jyoti NATH Rattan LAL 《Pedosphere》 SCIE CAS CSCD 2017年第1期172-176,共5页
Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by ... Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by accelerating erosion. Thus, reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands. Four sites of different land use types/tillage practices, i) no-till (NT) corn (Zea mays L.) (NTC), ii) conventional till (CT) corn (CTC), iii) pastureland (PL), and iv) native forest (NF), were selected at the North Appalachian Experimental Watershed Station, Ohio, USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation, mean weight diameter (MWD) and geometric mean diameter (GMD), and soil organic carbon and total nitrogen contents. The NTC plots received cow manure additions (about 15 t ha-1) every other year. The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-l). The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC. In the 0-10 cm soil layer, the 〉 4.75-mm size fraction dominated NTC and was 46% more than that for CTC, whereas the 〈 0.25-mm size fraction was 380% more for CTC than for NTC. The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm, respectively) were higher than those for CTC (1.47 and 0.72 mm, respectively) in the 0-10 cm soil layer. Macroaggregates contained 6%-42% and 13%-43% higher organic carbon and total nitrogen contents, respectively, than microaggregates in soil for all sites. Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC. Therefore, a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC. In contrast, soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates. The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF 〉 PL 〉 NTC 〉 CTC, being 35%-46% more for NTC over CTC. The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils. 展开更多
关键词 aggregate stability MACROAGGREGATES MICROAGGREGATES NO-TILL water-stable aggregation
原文传递
Organic amendment effects on nematode distribution within aggregate fractions in agricultural soils 被引量:5
7
作者 Xiaoke Zhang Xia Wu +2 位作者 Shixiu Zhang Yuehua Xing Wenju Liang 《Soil Ecology Letters》 CAS 2019年第3期147-156,共10页
To evaluate the effect of organic amendments on soil nematode community composition and diversity within aggregate fractions,a study was initiated in agricultural soils with four-year organic amendments.Soil samples w... To evaluate the effect of organic amendments on soil nematode community composition and diversity within aggregate fractions,a study was initiated in agricultural soils with four-year organic amendments.Soil samples were collected from the plow layer(0-20 cm)under three cornfield management scenarios:1)conventional cropping(CK,corn straw removal and no organic manure application);2)straw retention(SR,incorporation of chopped corn stalk);and 3)manure application(MA,chicken manure input).The soil samples were fractionated into four aggregate sizes,i.e.,>2 mm(large macroaggregates),1-2 mm(macroaggregates),0.25-1 mm(small macroaggregates),and<0.25 mm(microaggregates,silt and clay fractions).The composition and diversity of soil nematode communities were determined within each aggregate fraction.The results showed that both SR and MA treatments significantly increased the percentage of macroaggregates(>1 mm)and only MA treatment strongly increased the mean weight diameter compared to the CK(P<0.05).The abundance of total nematodes and four trophic groups were affected significantly by the aggregate fractions and their higher abundance occurred in the larger aggregates.The effects of aggregate size on most nematode genera were significant.Bacterivores in the small macroaggregates and microaggregates,and fungivores in the large macroaggregates were significantly different among treatments.The percentage of bacterivores increased after the application of organic materials,while that of fungivores decreased.It can be concluded that organic management significantly affects soil aggregation and soil characteristics within aggregates,and the aggregate size subsequently influences the distribution of nematode communities. 展开更多
关键词 Organic amendment Soil aggregate fractions Nematode communities Macroaggregate Microaggregate
原文传递
Short-Term Effect of Nitrogen Intensification on Aggregate Size Distribution, Microbial Biomass and Enzyme Activities in a Semi-Arid Soil Under Different Crop Types 被引量:2
8
作者 Rajasekaran MURUGAN V. R. Ramakrishna PARAMA +2 位作者 Beate MADAN R. MUTHURAJU Bernard LUDWIG 《Pedosphere》 SCIE CAS CSCD 2019年第4期483-491,共9页
There is a lack of quantitative assessments available on the effect of agricultural intensification on soil aggregate distribution and microbial properties. Here, we investigated how short-term nitrogen(N) intensifica... There is a lack of quantitative assessments available on the effect of agricultural intensification on soil aggregate distribution and microbial properties. Here, we investigated how short-term nitrogen(N) intensification induced changes in aggregate size distribution and microbial properties in a soil of a hot moist semi-arid region(Bangalore, India). We hypothesised that N intensification would increase the accumulation of macroaggregates > 2 mm and soil microbial biomass and activity, and that the specific crop plant sowed would influence the level of this increase. In November 2016, surface(0–10 cm) and subsurface(10–20 cm) soil samples were taken from three N fertilisation treatments, low N(50 kg N ha-1), medium N(75 and 100 kg N ha-1 for finger millet and maize, respectively),and high N(100 and 150 kg N ha-1 for finger millet and maize, respectively). Distribution of water-stable aggregate concentrations,carbon(C) and N dynamics within aggregate size class, and soil microbial biomass and activity were evaluated. The high-N treatment significantly increased the concentration of large macroaggregates in the subsurface soil of the maize crop treatment, presumably due to an increased C input from root growth. Different N fertilisation levels did not significantly affect C and N concentrations in different aggregate size classes or the bulk soil. High-N applications significantly increased dehydrogenase activity in both the surface soil and the subsurface soil and urease activity in the surface soil, likely because of increased accumulation of enzymes stabilised by soil colloids in dry soils. Dehydrogenase activity was significantly affected by the type of crop, but urease activity not. Overall, our results showed that high N application rates alter large macroaggregates and enzyme activities in surface and subsurface soils through an increased aboveground and corresponding belowground biomass input in the maize crop. 展开更多
关键词 AGRICULTURAL INTENSIFICATION biomass input C and N dynamics large macroaggregate microaggregate N application small macroaggregate water-stable AGGREGATES
原文传递
Nitrogen addition reduced carbon mineralization of aggregates in forest soils but enhanced in paddy soils in South China 被引量:1
9
作者 Ruirui Cao Longchi Chen +2 位作者 Xincun Hou Xiaotao Lü Haimei Li 《Ecological Processes》 SCIE EI 2021年第1期597-607,共11页
Background:Despite the crucial role of nitrogen(N)availability in carbon(C)cycling in terrestrial ecosystems,soil organic C(SOC)mineralization in different sizes of soil aggregates under various land use types and the... Background:Despite the crucial role of nitrogen(N)availability in carbon(C)cycling in terrestrial ecosystems,soil organic C(SOC)mineralization in different sizes of soil aggregates under various land use types and their responses to N addition is not well understood.To investigate the responses of soil C mineralization in different sized aggregates and land use types to N addition,an incubation experiment was conducted with three aggregate-size classes(2000,250,and 53μm)and two land use types(a Chinese fir plantation and a paddy land).Results:Cumulative C mineralization of the<53-μm fractions was the highest and that of microaggregates was the lowest in both forest and paddy soils,indicating that soil aggregates enhanced soil C stability and reduced the loss of soil C.Cumulative C mineralization in all sizes of aggregates treated with N addition decreased in forest soils,but that in microaggregates and the<53-μm fraction increased in paddy soils treated with 100μgNg−1.Moreover,the effect sizes of N addition on C mineralization of forest soils were below zero,but those of paddy soils were above zero.These data indicated that N addition decreased SOC mineralization of forest soils but increased that of paddy soils.Conclusions:Soil aggregates play an important role in soil C sequestration,and decrease soil C loss through the increase of soil C stability,regardless of land use types.N addition has different effects on soil C mineralization in different land use types.These results highlight the importance of soil aggregates and land use types in the effects of N deposition on the global terrestrial ecosystem C cycle. 展开更多
关键词 ULTISOL Land use type MICROAGGREGATES Soil organic carbon
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部