期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Development in oxide metallurgy for improving the weldability of high -strength low-alloy steel-Combined deoxidizers and microalloying elements
1
作者 Tingting Li Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1263-1284,共22页
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du... The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy. 展开更多
关键词 oxide metallurgy technology heat affected zone high-strength low-alloy steel intragranular acicular ferrite microalloying element
下载PDF
Effects of Rare-earth and Microalloying Elements on the Microstructure Characteristics of Hypereutectoid Rails
2
作者 戴宇恒 ZHAO Wenqian +1 位作者 包喜荣 陈林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期682-688,共7页
We performed thermal simulation experiments of double-pass deformation of hypereutectoid rails with different microalloying elements at a cooling rate of 1℃/s and deformation of 80%to explore the influence of rare-ea... We performed thermal simulation experiments of double-pass deformation of hypereutectoid rails with different microalloying elements at a cooling rate of 1℃/s and deformation of 80%to explore the influence of rare-earth and microalloying elements on the structure of hypereutectoid rails and optimize the composition design of hypereutectoid rails.Scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and other characterization techniques were employed to quantitatively analyzed the effects of different microalloying elements,including rare-earth elements,on pearlite lamellar spacing,cementite characteristics,and dislocation density.It was found that the lamellar spacing was reduced by adding various microalloying elements.Cementite lamellar thickness decreased with the refinement of pearlite lamellar spacing while the cementite content per unit volume increased.Local cementite spheroidization,dispersed in the ferrite matrix in granular form and thus playing the role of dispersion strengthening,was observed upon adding cerium(Ce).The contributions of dislocation density to the alloy strength of four steel sheet samples with and without the addition of nickel,Ce,and Ce–copper(Cu)composite were 26,27,32,and 37 MPa,respectively,indicating that the Ce–Cu composite had the highest dislocation strengthening effect.The Ce–Cu composite has played a meaningful role in the cementite characteristics and dislocation strengthening,which provides a theoretical basis for optimizing the composition design of hypereutectoid rails in actual production conditions. 展开更多
关键词 microalloying elements rare earth hypereutectoid rail CEMENTITE DISLOCATION
下载PDF
Static Softening Behaviour of Hot-worked Austenite in Microalloyed Structural Steel StE460
3
作者 Fuming Wang Li Tang +1 位作者 J -J. Esser W Bleck (Applied Science School, University of Science and Technology Beliing, Beliing 100083, China)(Paashihua Steelworks, Sichuan 617000, China)(Aachen University of Technology, Germany 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第1期35-43,共9页
Double-hit compression tests were performed on StE460 steel containing microalloying elements niobium and vanadium over a range of temperatures and strain rates penment to hot rolling. The fractional softening was eva... Double-hit compression tests were performed on StE460 steel containing microalloying elements niobium and vanadium over a range of temperatures and strain rates penment to hot rolling. The fractional softening was evaluated by use of the offset method, which was confirmed to be a very reasonable method. Appropriate expressions are given for the static recrystallization kinetics as a function of temperature and strain rate. Particular attention is paid to the effect of strain rate on static recrystallization. It can be shown that the static softening is apparently accelerated by strain rate. Recrystallization in low temperature austenitic region is stopped due to precipitation of carbonitrides of microalloying elements, which is reflected in the form of a plateau in the curves of static softening. 展开更多
关键词 microalloying elements precipitation of carbonitrides static softening
下载PDF
Behavior of precipitation in bainitic steel during relaxation processing of RPC technique 被引量:8
4
作者 ShanwuYang ShaoqiangYuan: +2 位作者 XueminWang HuibinWu XinlaiHe 《Journal of University of Science and Technology Beijing》 CSCD 2004年第3期230-234,共5页
Thermal simulation test, TEM (Transmission Electron Microscope) and nanobeamEDS (Energy Dispersed x-ray Spectrum) techniques were used to investigate the precipitation behaviorof Nb, Ti, Mo etc. in HSLA (High Strength... Thermal simulation test, TEM (Transmission Electron Microscope) and nanobeamEDS (Energy Dispersed x-ray Spectrum) techniques were used to investigate the precipitation behaviorof Nb, Ti, Mo etc. in HSLA (High Strength Low Alloy) steel. The strain induced precipitationoccurred during the isothermal relaxation stage after deformed in the non-recrystallizationtemperature region. After 30% predeformation at 850 and 900℃, there are two kinds of particles,(Ti,Nb)(C,N) and a few Nb(C,N), to precipitate during holding. The content of Nb in particles riseswith the relaxation time increasing. During the final holding stage, some Nb and Ti atoms in thelattice sites of the precipitates would be replaced by Mo atoms, and the Mo content in theprecipitates increases with the relaxation time. The results were compared with the refinementeffect of microstructures caused by relaxation-precipitation controlling transformation (RPC)processing. 展开更多
关键词 RPC technique microalloyed element (Ti Nb)(C N) nanobeam EDS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部