S To provide evidences for exploiting tissue microarray (TMA) technology, we reviewed advantages and applications of TMA on tumor research. TMA has many advantages, including (1) section from TMA blocks can be utili...S To provide evidences for exploiting tissue microarray (TMA) technology, we reviewed advantages and applications of TMA on tumor research. TMA has many advantages, including (1) section from TMA blocks can be utilized for the simultaneous analysis of up to 1,000 different tumors at DNA, RNA or protein level; (2) TMA is highly representative of their donor tissues; (3) TMA can improve conservation of tissue resources and experimental reagents, improve internal experimental control, and increase sample numbers per experiment, and can be used for large-scale, massively parallel in situ analysis; (4) TMA facilitates rapid translation of molecular discoveries to clinical applications. TMA has been applied to tumor research, such as glioma, breast tumor, lung cancer and so on. The development of novel biochip technologies has opened up new possibilities for the high-throughput molecular profiling of human tumors. Novel molecular markers emerging from high-throughput expression surveys could be analyzed on tumor TMA. It is anticipated that TMA, a new member of biochip, will soon become a widely used tool for all types of tissue-based research. TMA will lead to a significant acceleration of the transition of basic research findings into clinical applications.展开更多
Microarray technology has been widely applied in biomedical research.The key to microarray study is to develop efficient immobilization method.In this study,we designed a new reversible microarray immobilization metho...Microarray technology has been widely applied in biomedical research.The key to microarray study is to develop efficient immobilization method.In this study,we designed a new reversible microarray immobilization method based on thiol-quinone reaction.A quinone-functionalized slide was fabricated through H_(2)O_(2)treatment of dopamine-coated slides.Various thiol-containing molecules can be anchored onto the quinone-functionalized slides via thioether linker,which could be cleaved under H_(2)O_(2) treatment to regenerate quinone groups on the surface.The highly versatile approach can be widely used for immobilization of various thiol-containing molecules.展开更多
文摘S To provide evidences for exploiting tissue microarray (TMA) technology, we reviewed advantages and applications of TMA on tumor research. TMA has many advantages, including (1) section from TMA blocks can be utilized for the simultaneous analysis of up to 1,000 different tumors at DNA, RNA or protein level; (2) TMA is highly representative of their donor tissues; (3) TMA can improve conservation of tissue resources and experimental reagents, improve internal experimental control, and increase sample numbers per experiment, and can be used for large-scale, massively parallel in situ analysis; (4) TMA facilitates rapid translation of molecular discoveries to clinical applications. TMA has been applied to tumor research, such as glioma, breast tumor, lung cancer and so on. The development of novel biochip technologies has opened up new possibilities for the high-throughput molecular profiling of human tumors. Novel molecular markers emerging from high-throughput expression surveys could be analyzed on tumor TMA. It is anticipated that TMA, a new member of biochip, will soon become a widely used tool for all types of tissue-based research. TMA will lead to a significant acceleration of the transition of basic research findings into clinical applications.
基金the financial support from the Research Grants Council of Hong Kong(Nos.11102719,11304118 and 14306317)Shenzhen Basic Research Project(No.JCYJ20160601173218804)+1 种基金National Natural Science Foundation of China(No.21778044)the Shandong University of Technology Ph.D.Startup Foundation(No.420033)。
文摘Microarray technology has been widely applied in biomedical research.The key to microarray study is to develop efficient immobilization method.In this study,we designed a new reversible microarray immobilization method based on thiol-quinone reaction.A quinone-functionalized slide was fabricated through H_(2)O_(2)treatment of dopamine-coated slides.Various thiol-containing molecules can be anchored onto the quinone-functionalized slides via thioether linker,which could be cleaved under H_(2)O_(2) treatment to regenerate quinone groups on the surface.The highly versatile approach can be widely used for immobilization of various thiol-containing molecules.