期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于人工神经网络集成的微阵列数据分类 被引量:5
1
作者 王明怡 吴平 夏顺仁 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第7期971-975,共5页
基因数量远多于样本数量是基因表达微阵列数据进行疾病诊断所面临的主要挑战,为此提出了采用人工神经网络集成的组织分类方法.该方法使用Wilcoxon测试选择用于与分类相关性较高的重要基因,通过凸伪数据法产生神经网络集成中各个体的训练... 基因数量远多于样本数量是基因表达微阵列数据进行疾病诊断所面临的主要挑战,为此提出了采用人工神经网络集成的组织分类方法.该方法使用Wilcoxon测试选择用于与分类相关性较高的重要基因,通过凸伪数据法产生神经网络集成中各个体的训练集,用简单平均法集成网络个体的测试结果.采用实际的微阵列实验数据集分别进行独立测试和交叉验证测试,结果表明,该方法性能优于单个神经网络、最近邻法和决策树.受试者特征曲线测试表明,神经网络集成性能优于单个神经网络. 展开更多
关键词 微阵列 组织分类 人工神经网络集成
下载PDF
基于概率神经网络的基因选择和组织分类方法 被引量:2
2
作者 王明怡 王德林 黄金钟 《科技通报》 2005年第1期10-13,共4页
提出了基于概率神经网络的微阵列数据分析方法。该方法采用Wrapper模式,将基因选择整合到组织分类任务中,并给出了采用随机寻优的特征子集搜索算法。实际的生物学实验数据证明该方法有较高的分类准确性,选择的基因集合与组织类别有较高... 提出了基于概率神经网络的微阵列数据分析方法。该方法采用Wrapper模式,将基因选择整合到组织分类任务中,并给出了采用随机寻优的特征子集搜索算法。实际的生物学实验数据证明该方法有较高的分类准确性,选择的基因集合与组织类别有较高相关性。 展开更多
关键词 微阵列 概率神经网络 基因选择 组织分类
下载PDF
Multiclass stand-alone and ensemble machine learning algorithms utilised to classify soils based on their physico-chemical characteristics 被引量:2
3
作者 Eyo Eyo Samuel Abbey 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期603-615,共13页
This study has provided an approach to classify soil using machine learning.Multiclass elements of stand-alone machine learning algorithms(i.e.logistic regression(LR)and artificial neural network(ANN)),decision tree e... This study has provided an approach to classify soil using machine learning.Multiclass elements of stand-alone machine learning algorithms(i.e.logistic regression(LR)and artificial neural network(ANN)),decision tree ensembles(i.e.decision forest(DF)and decision jungle(DJ)),and meta-ensemble models(i.e.stacking ensemble(SE)and voting ensemble(VE))were used to classify soils based on their intrinsic physico-chemical properties.Also,the multiclass prediction was carried out across multiple cross-validation(CV)methods,i.e.train validation split(TVS),k-fold cross-validation(KFCV),and Monte Carlo cross-validation(MCCV).Results indicated that the soils’clay fraction(CF)had the most influence on the multiclass prediction of natural soils’plasticity while specific surface and carbonate content(CC)possessed the least within the nature of the dataset used in this study.Stand-alone machine learning models(LR and ANN)produced relatively less accurate predictive performance(accuracy of 0.45,average precision of 0.5,and average recall of 0.44)compared to tree-based models(accuracy of 0.68,average precision of 0.71,and recall rate of 0.68),while the meta-ensembles(SE and VE)outperformed(accuracy of 0.75,average precision of 0.74,and average recall rate of 0.72)all the models utilised for multiclass classification.Sensitivity analysis of the meta-ensembles proved their capacities to discriminate between soil classes across the methods of CV considered.Machine learning training and validation using MCCV and KFCV methods enabled better prediction while also ensuring that the dataset was not overfitted by the machine learning models.Further confirmation of this phenomenon was depicted by the continuous rise of the cumulative lift curve(LC)of the best performing models when using the MCCV technique.Overall,this study demonstrated that soil’s physico-chemical properties do have a direct influence on plastic behaviour and,therefore,can be relied upon to classify soils. 展开更多
关键词 Soil classification Physico-chemistry Soil plasticity Machine learning Logistic regression(LR) Machine learning ensembles artificial neural network(ANN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部