期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of butachlor on microbial enzyme activities in paddy soil 被引量:3
1
作者 MinH YeYF 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期413-417,共5页
This paper reports the influences of the herbicide butachlor( n butoxymethl chloro 2', 6' diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehyd... This paper reports the influences of the herbicide butachlor( n butoxymethl chloro 2', 6' diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 μg/g dried soil, 11.0 μg/g dried soil and 22.0 μg/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 μg/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil. 展开更多
关键词 HERBICIDE BUTACHLOR microbial enzyme activity paddy rice soil
下载PDF
Effects of different forms of nitrogen addition on microbial extracellular enzyme activity in temperate grassland soil 被引量:1
2
作者 Lili Dong Björn Berg +2 位作者 Weiping Gu Zhengwen Wang Tao Sun 《Ecological Processes》 SCIE EI 2022年第1期483-490,共8页
Background:Nitrogen(N)deposition alters litter decomposition and soil carbon(C)sequestration by influencing the microbial community and its enzyme activity.Natural atmospheric N deposition comprises of inorganic N(IN)... Background:Nitrogen(N)deposition alters litter decomposition and soil carbon(C)sequestration by influencing the microbial community and its enzyme activity.Natural atmospheric N deposition comprises of inorganic N(IN)and organic N(ON)compounds.However,most studies have focused on IN and its effect on soil C cycling,whereas the effect of ON on microbial enzyme activity is poorly understood.Here we studied the effects of different forms of externally supplied N on soil enzyme activities related to decomposition in a temperate steppe.Ammonium nitrate was chosen as IN source,whereas urea and glycine were chosen as ON sources.Different ratios of IN to ON(Control,10:0,7:3,5:5,3:7,and 0:10)were mixed with equal total amounts of N and then used to fertilize the grassland soils for 6 years.Results:Our results show that IN deposition inhibited lignin-degrading enzyme activity,such as phenol oxidase(POX)and peroxidase(PER),which may restrain decomposition and thus induce accumulation of recalcitrant organic C in grassland soils.By contrast,deposition of ON and mixed ON and IN enhanced most of the C-degrading enzyme activities,which may promote the organic matter decomposition in grassland soils.In addition,theβ-N-acetyl-glucosaminidase(NAG)activity was remarkably stimulated by fertilization with both IN and ON,maybe because of the elevated N availability and the lack of N limitation after long-term N fertilization at the grassland site.Meanwhile,differences in soil pH,soil dissolved organic carbon(DOC),and microbial biomass partially explained the differential effects on soil enzyme activity under different forms of N treatments.Conclusions:Our results emphasize the importance of organic N deposition in controlling soil processes,which are regulated by microbial enzyme activities,and may consequently change the ecological effect of N deposition.Thus,more ON deposition may promote the decomposition of soil organic matter thus converting C sequestration in grassland soils into a C source. 展开更多
关键词 Inorganic N deposition Organic N deposition Soil microbial biomass microbial enzyme activity DECOMPOSITION GRASSLAND
原文传递
Shifts in microbial community structure and diversity in a MBR combined with worm reactors treating synthetic wastewater 被引量:7
3
作者 Jia Liu Wei Zuo +3 位作者 Jun Zhang Hui Li Lipin Li Yu Tian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期246-255,共10页
The chemical oxygen demand(COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor(MBR) coupled with worm reactors(SSBWR) were evaluated for 21... The chemical oxygen demand(COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor(MBR) coupled with worm reactors(SSBWR) were evaluated for 210 days. The obtained results were compared to those from a conventional MBR(C-MBR) operated in parallel. The results indicated that the combined MBR(S-MBR) achieved higher COD and NH3-N removal efficiency,slower increase in membrane fouling, better sludge settleability and higher activities of the related enzymes in the activated sludge. Denaturing gradient gel electrophoresis was used to analyze the microbial community structures in the C-MBR and the S-MBR. The microbial community structure in the S-MBR was more diverse than that in the C-MBR. Additionally, the slow-growing microbes such as Saprospiraceae, Actinomyces, Frankia, Clostridium, Comamonas,Pseudomonas, Dechloromonas and Flavobacterium were enriched in the S-MBR, further accounting for the sludge reduction, membrane fouling alleviation and wastewater treatment. 展开更多
关键词 Membrane bioreactor(MBR) enzyme activities microbial community structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部