期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Habitats shape root-associated fungal and bacterial communities of Minjiang fir saplings
1
作者 Maoping Li Ning Miao Shirong Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1491-1502,共12页
Root-associated microbes play an essentialrole in mediating plant growth,health,and habitat adaptability.However,it is unknown which microbial taxa help develop host fitness and how habitats shape root-associated micr... Root-associated microbes play an essentialrole in mediating plant growth,health,and habitat adaptability.However,it is unknown which microbial taxa help develop host fitness and how habitats shape root-associated microbial assembly patterns.As an endemic species of subalpine forests in western Sichuan,China,Minjiang fir(Abies fargesii var.faxoniana)is dominant on cold-shaded northwestern slopes while absent on warm sunlit southwestern slopes.In this study,fungal and bacterial communities were investigated in three spatial compartments(endosphere,rhizosphere,and bulk soil)associated with Minjiang fir saplings on a cold-shaded northwestern slope and a warm sunlit southwestern slope.Habitats differentiated the microbial communities regardless of the spatial compartment and microbial taxa.Slope aspect variations caused shifts in root-associated(rhizosphere and endosphere)microbial compositions.Compared with the southwestern slope,the cold-shaded northwestern slope harbored a higher abundance of the growth-promoting bacteria Burkholderia and ectomycorrhizal fungi Cortinarius and Piloderma.The slope aspect had stronger effects on fungal diversity than bacterial diversity,with higher fungal endemism and lower bacterial endemism.Slope aspect variations were the dominant drivers of root-associated microbial communities,with lower contribution by soil properties and higher contribution by plant traits on the northwestern slope.Findings from this study could improve the understanding of plant habitat adaptability from the perspective of microbial community assembly.It is suggested that forest management should consider root-associated microbiomes for enhancing species fitness and habitat adaptability. 展开更多
关键词 Species fitness Root-associated microbes microbial assembly patterns Habitat conditions
下载PDF
Root exudate chemistry affects soil carbon mobilization via microbial community reassembly 被引量:5
2
作者 Tao Wen Guang-Hui Yu +7 位作者 Wen-Dan Hong Jun Yuan Guo-Qing Niu Peng-Hao Xie Fu-Sheng Sun Lao-Dong Guo Yakov Kuzyakov Qi-Rong Shen 《Fundamental Research》 CAS 2022年第5期697-707,共11页
Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits,including root exudates.Although rhizodeposition regulates both microbial activity and the biogeoc... Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits,including root exudates.Although rhizodeposition regulates both microbial activity and the biogeochemical cycling of nutrients,the effects of particular exudate species on soil carbon fluxes and key rhizosphere microorganisms remain unclear.By combining high-throughput sequencing,q-PCR,and NanoSIMS analyses,we characterized the bacterial community structure,quantified total bacteria depending on root exudate chemistry,and analyzed the consequences on the mobility of mineral-protected carbon.Using well-controlled incubation experiments,we showed that the three most abundant groups of root exudates(amino acids,carboxylic acids,and sugars)have contrasting effects on the release of dissolved organic carbon(DOC)and bioavailable Fe in an Ultisol through the disruption of organo-mineral associations and the alteration of bacterial communities,thus priming organic matter decomposition in the rhizosphere.High resolution(down to 50 nm)NanoSIMS images of mineral particles indicated that iron and silicon colocalized significantly more organic carbon following amino acid inputs than treatments without exudates or with carboxylic acids.The application of sugar strongly reduced microbial diversity without impacting soil carbon mobilization.Carboxylic acids increased the prevalence of Actinobacteria and facilitated carbon mobilization,whereas amino acid addition increased the abundances of Proteobacteria that prevented DOC release.In summary,root exudate functions are defined by their chemical composition that regulates bacterial community composition and,consequently,the biogeochemical cycling of carbon in the rhizosphere. 展开更多
关键词 microbial community assembly NanoSIMS imaging Priming effects Root exudate chemistry Soil organic carbon Rhizosphere processes
原文传递
Mixing regime shapes the community assembly process,microbial interaction and proliferation of cyanobacterial species Planktothrix in a stratified lake
3
作者 Junwen Chen Huacong Liu +5 位作者 Yaohui Bai Jing Qi Weixiao Qi Huijuan Liu Jianfeng Peng Jiuhui Qu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期103-113,共11页
Lake mixing influences aquatic chemical properties and microbial community composition,and thus,we hypothesized that it would alter microbial community assembly and interac-tion.To clarify this issue,we explored the c... Lake mixing influences aquatic chemical properties and microbial community composition,and thus,we hypothesized that it would alter microbial community assembly and interac-tion.To clarify this issue,we explored the community assembly processes and cooccurrence networks in four seasons at two depths(epilimnion and hypolimnion)in a mesotrophic and stratified lake(Chenghai Lake),which formed stratification in the summer and turnover in the winter.During the stratification period,the epilimnion and hypolimnion went through contrary assembly processes but converged to similar assembly patterns in the mixing pe-riod.In a highly homogeneous selection environment,species with low niche breadth were filtered,resulting in decreased species richness.Water mixing in the winter homogenized the environment,resulting in a simpler microbial cooccurrence network.Interestingly,we observed a high abundance of the cyanobacterial genus Planktothrix in the winter,proba-bly due to nutrient redistribution and Planktothrix adaptivity to the winter environment in which mixing played important roles.Our study provides deeper fundamental insights into how environmental factors influence microbial community structure through community assembly processes. 展开更多
关键词 Stratified lake Water mixing microbial community assembly microbial interaction PLANKTOTHRIX
原文传递
Construction of hybrid constructed wetlands for phosphorus chemical industry tailwater treatment in the middle Yangtze river basin:Responses of plant growth and root-associated microbial communities 被引量:2
4
作者 Qianzheng Li Yao Guo +8 位作者 Junqi Yu Lu Yao Shun Liu Yahua Li Disong Chen Fei Peng Dong Xu Zhenbin Wu Qiaohong Zhou 《Water Biology and Security》 2023年第3期36-46,共11页
Constructed wetlands are commonly utilized to treat industrial wastewater due to their effectiveness,affordability,and environmental benefits.Many phosphorus chemical enterprises in the middle Yangtze River basin are ... Constructed wetlands are commonly utilized to treat industrial wastewater due to their effectiveness,affordability,and environmental benefits.Many phosphorus chemical enterprises in the middle Yangtze River basin are facing high pollution load challenges and efforts are needed to improve removal efficiency of pollutants.This work was the first to use constructed wetlands for phosphorus chemical industry tailwater(PCITW)treatment.The new hybrid constructed wetlands(CWs)proposed were the aeration horizontal subsurface flow constructed wetland(AHSCW)and the integrated vertical flow constructed wetland(IVCW),which were constructed on a pilot scale.Here,the effectiveness of pollutant removal along hybrid CWs,wetland plant growth,and rootassociated microbial community responses to the PCITW were investigated.The results showed that there was spatial variation in removal of carbon,nitrogen,and phosphorus in the hybrid CWs,and that the AHSCW and the IVCW played synergistic roles in the removal of pollutants.Compared with influent,the toxic effect of effluent to embryos of a rare minnow(Gobiocypris rarus)was alleviated.Exposure to the effluent resulted in no malformation or death for embryos.Plants and microorganisms in the wetland system of the phosphate chemical tailwater were then compared with the control system of municipal tailwater.Plants in the former system had lower root density,and higher average root diameter,root shoot ratio,specific root length,and specific surface area.Plant roots also had decreased NH_(4)^(+)uptake ability but increased Ca^(2+)uptake to adapt to the high load and complex pollution stress.Unlike the control system,stochastic mechanisms had a more important role than deterministic processes in shaping the microbial community assembly associated with the PCITW.Meanwhile,analysis of microbial network-level topological characteristics demonstrated substantial reduction in network interactions complexity and microbiome stability in the treatment system.Findings from this study suggest wetlands will be helpful for efficient purification of phosphorus chemical industry wastewater in the Yangtze River basin. 展开更多
关键词 Constructed wetlands Phosphorus chemical industry tailwater Rare minnow Non-invasive micro-test technology microbial assembly
原文传递
Differences in distributions, assembly mechanisms, and putative interactions of AOB and NOB at a large spatial scale 被引量:1
5
作者 Bing Zhang Chenxiang Sun +5 位作者 Huimin Lin Wei Liu Wentao Qin Tan Chen Ting Yang Xianghua Wen 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第10期55-64,共10页
Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) play crucial roles in removing nitrogen from sewage in wastewater treatment plants (WWTPs) to protect water resources. However, the differences in ... Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) play crucial roles in removing nitrogen from sewage in wastewater treatment plants (WWTPs) to protect water resources. However, the differences in ecological properties and putative interactions of AOB and NOB in WWTPs at a large spatial scale remain unclear. Hence, 132 activated sludge (AS) samples collected from 11 cities across China were studied by utilizing 16S rRNA gene sequencing technology. Results indicated that Nitrosomonas and Nitrosospira accounted for similar ratios of the AOB community and might play nearly equal roles in ammonia oxidation in AS. However, Nitrospira greatly outnumbered other NOB genera, with proportions varying from 94.7% to 99.9% of the NOB community in all WWTPs. Similar compositions and, hence, a low distance–decay turnover rate of NOB (0.035) across China were observed. This scenario might have partly resulted from the high proportions of homogenizing dispersal (~13%). Additionally, drift presented dominant roles in AOB and NOB assembling mechanisms (85.2% and 81.6% for AOB and NOB, respectively). The partial Mantel test illustrated that sludge retention time and temperature were the primary environmental factors affecting AOB and NOB communities. Network results showed that NOB played a leading role in maintaining module structures and node connections in AS. Moreover, most links between NOB and other microorganisms were positive, indicating that NOB were involved in complex symbioses with bacteria in AS. 展开更多
关键词 Activated sludge Spatial distributions microbial assembly Co-occurrence patterns Nitrifying bacteria
原文传递
Drivers of microbial beta-diversity in wastewater treatment plants in China
6
作者 Bing Zhang Ting Yang +1 位作者 Chenxiang Sun Xianghua Wen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期341-349,共9页
As one of the most well-documented biogeographic patterns,the distance-decay relation-ship provides insights into the underlying mechanisms driving biodiversity distribution.Al-though wastewater treatment plants(WWTPs... As one of the most well-documented biogeographic patterns,the distance-decay relation-ship provides insights into the underlying mechanisms driving biodiversity distribution.Al-though wastewater treatment plants(WWTPs)are well-controlled engineered ecosystems,this pattern has been seen among microbial communities in activated sludge(AS).However,little is known about the relative importance of environmental heterogeneity and dispersal limitation in shaping AS microbial community across China;especially they are related to spatial scale and organism types.Here,we assessed the distance-decay relationship based on different spatial scales and microbial phylogenetic groups by analyzing 132 activated sludge(AS)samples across China comprising 3,379,20016S rRNA sequences.Our results in-dicated that the drivers of distance-decay pattern in China were scale-dependent.Microbial biogeographic patterns in WWTPs were mainly driven by dispersal limitation at both local and national scales.In contrast,conductivity,SRT,and pH played dominant roles in shaping AS microbial community compositions at the regional scale.Turnover rates and the drivers of beta-diversity also varied with microorganism populations.Moreover,a quantitative re-lationship between dispersal limitation ratio and AS microbial turnover rate was generated.Collectively,these results highlighted the importance of considering multiple spatial scales and micro-organism types for understanding microbial biogeography in WWTPs and pro-vided new insights into predicting variations in AS community structure in response to environmental disturbance. 展开更多
关键词 Wastewater treatment plant Distance-decay pattern Scale-dependent microbial assembly Dispersal limitation
原文传递
Revealing the role of microalgae-bacteria niche for boosting wastewater treatment and energy reclamation in response to temperature 被引量:1
7
作者 Chaofan Zhang Xi Chen +4 位作者 Meina Han Xue Li Haixing Chang Nanqi Ren Shih-Hsin Ho 《Environmental Science and Ecotechnology》 SCIE 2023年第2期87-96,共10页
Conventional biological treatment usually cannot achieve the same high water quality as advanced treatment when conducted under varied temperatures.Here,satisfactory wastewater treatment efficiency was observed in a m... Conventional biological treatment usually cannot achieve the same high water quality as advanced treatment when conducted under varied temperatures.Here,satisfactory wastewater treatment efficiency was observed in a microalgae-bacteria consortia(MBC)over a wide temperature range because of the predominance of microalgae.Microalgae contributed more toward wastewater treatment at low temperature because of the unsatisfactory performance of the accompanying bacteria,which experienced cold stress(e.g.,bacterial abundance below 3000 sequences)and executed defensive strategies(e.g.,enrichment of cold-shock proteins).A low abundance of amoA-C and hao indicated that conventional nitrogen removal was replaced through the involvement of microalgae.Diverse heterotrophic bacteria for nitrogen removal were identified at medium and high temperatures,implying this microbial niche treatment contained diverse flexible consortia with temperature variation.Additionally,pathogenic bacteria were eliminated through microalgal photosynthesis.After fitting the neutral community model and calculating the ecological niche,microalgae achieved a maximum niche breadth of 5.21 and the lowest niche overlap of 0.38,while the accompanying bacterial community in the consortia were shaped through deterministic processes.Finally,the maximum energy yield of 87.4 kJ L^(-1)and lipid production of 1.9 g L^(-1)were achieved at medium temperature.Altogether,this study demonstrates that advanced treatment and energy reclamation can be achieved through microalgae-bacteria niche strategies. 展开更多
关键词 Metabolomics Niche width PATHOGENS Nutrients removal microbial community assembly
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部