期刊文献+
共找到257篇文章
< 1 2 13 >
每页显示 20 50 100
Mixing Alfalfa Straw and Maize Straw to Enhance Nitrogen Mineralization, Microbial Biomass and Enzyme Activity: A Laboratory Study 被引量:5
1
作者 李涛 葛晓颖 +1 位作者 何春娥 欧阳竹 《Agricultural Science & Technology》 CAS 2016年第8期1869-1874,共6页
The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilize... The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilizers have been applied to the soil to improve crop yields in China, which not only increases production cost but also reduces soil quality. Therefore, reasonable application of N fertilizer becomes a key problem after straw retention. This study aimed to assess the effects of applying maize straw with high quality alfalfa straw on mineral N content, microbial biomass and enzyme activity under controlled conditions. The effect of applying maize straw with alfalfa straw was compared with that of maize straw in combination with N fertilizer under the same C: N ratio (25:1). The laboratory incubation experiment consisted of four treatments: (1) soil with no addition (CK); (2) soil amended with maize straw (M); (3) soil amended with alfalfa straw and maize straw with an adjusted C: N ratio of 25:1 (MM); (4) soil amended with inorganic nitrogen fertilizer and maize straw with an adjusted C:N ratio of 25:1 (MF). The results showed that application of maize straw leaded to an N immobilization during the 270 d of incubation. Combined application of alfalfa and maize straw and or mineral N fertilizer alleviates the N immobilization and increase soil mineral N content. Compared to MF treatment, MM treatment prolonged N availability during the incubation. MM and MF treatments increased the soil microbial biomass carbon and nitrogen contents, and soil invertase and β-glycosidase activities. There was no difference between MM and M treatment in soil urease activity. MF treatment had significantly negative influence on soil urease activity compared with M treatment. The amount of added N significantly affected mineral N content, soil microbial biomass and enzyme activity. The mixture of alfalfa straw and maize straw sustains higher level of mineral N content, microbial biomass and enzyme activity as it had high N input compared to maize straw in combination with N fertilizer. It is concluded that alfalfa straw may be a better N source than N fertilizer in alleviating N immobilization caused by maize straw retention. 展开更多
关键词 Straw retention C: n ratio Mineral n Soil microbial biomass Soil enzyme activity
下载PDF
Soil Microbial Biomass Nitrogen and Its Relationship to Uptake of Nitrogen by Plants 被引量:27
2
作者 ZHOUJIANBIN LISHENGXIU 《Pedosphere》 SCIE CAS CSCD 2002年第3期251-256,共6页
The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anae... The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM).The N taken up by ryegrass on the soils was determined after a glasshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM, CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant. 展开更多
关键词 mineral n n uptake soil microbial biomass n
下载PDF
Relationship Between Soil Microbial Biomass C and N and Mineralizable Nitrogen in Some Arable Soils on Loess Plateau 被引量:15
3
作者 ZHOUJIANBIN LISHENGXIU 《Pedosphere》 SCIE CAS CSCD 1998年第4期349-354,共6页
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in ... The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils. 展开更多
关键词 CARBOn mineralizable n nITROGEn soil microbial biomass
下载PDF
Effect of Long-Term Straw Incorporation on SoilMicrobial Biomass and C and N Dynamics 被引量:10
4
作者 SHENRENFANG P.C.BROOKES 《Pedosphere》 SCIE CAS CSCD 1997年第4期297-302,共6页
A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial bio... A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g d) -1 ) decreased rapidly in the first two weeks’ incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in neatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils. 展开更多
关键词 C and n dynamics microbial biomass C soil incubation
下载PDF
Effect of land use on microbial biomass-C, -N and -P in red soils 被引量:11
5
作者 陈国潮 何振立 《Journal of Zhejiang University Science》 EI CSCD 2003年第4期480-484,共5页
Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg... Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg C/kg, which is generally lower than that reported from other types of soil, probably because of low organic matter and high acidity in the red soils. Land use had considerable effects on the amounts of soil C mic . The C mic was the lowest in eroded fallow land, followed by woodland, tea garden, citrus grove and fallow grassland, and the highest in vegetable and paddy fields. There was significant correlation between C mic and organic matter content, suggesting that the influence of land use on C mic is mainly related to the input and accumulation of organic matter. Microbial biomass N in the soils ranged from 12.1 Nmg/kg to 31.7 Nmg/kg and was also affected by land use. The change of N mic with land use was similar to that of C mic . The microbial C/N ratio ranged from 5.2 to 9.9 and averaged 7.6. The N mic was significantly correlated with soil total N and available N. Microbial biomass P in the soils ranged from 4.5 mg P/kg to 52.3 mg P/kg. The microbial C/P ratio was in the range of 4-23. The P mic was relatively less affected by land use due to differences in fertilization practices for various land use systems. 展开更多
关键词 Land use microbial biomass C n and P Red soils
下载PDF
Long-Term Impact of Soil Management on Microbial Biomass C, N and P in Rice-Based Cropping System 被引量:4
6
作者 GAO YAJUN, HUANG DONGMAI, ZHU PEILI, WANG ZHIMING and LI SHENGXIU Soil and Fertilizer Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China) College of Resources and Environment, Northwestern Science and Technology University of Agric 《Pedosphere》 SCIE CAS CSCD 2001年第4期349-357,共9页
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Fiv... A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Five fertilization treatments were designed under conventional tillage (CT) or no tillage (NT) system: no fertilizer (CK); chemical fertilizer only (CF); combining chemical fertilizer with pig manure (PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C, N and P were enriched in the surface layer of no-tilled soil, whereas they distributed relatively evenly in the tilled soil, which might result from enrichment of crop residue, organic manure and mineral fertilizer, and surficial development of root systems under NT. Under the cultivation system, NT had slightly greater biomass C, N and P at 0~5 cm depth, significantly less biomass C, N and P at 5~15 cm depth, less microbial biomass C, N and equivalent biomass P at 15 ~30 cm depth as compared to CT, indicating that tillage was beneficial for the multiplica tion of organisms in the plowed layer of soil. Under the fallow system, biomass C, N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were negligible in the deeper layers. In the surface layer, biomass C, N and P in the soils amended with organic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control. Soils without fertilizer had the least biomass nutrient contents among the five fertilization treatments. Obviously, the long-term application of organic manure could maintain the higher activity of microorganisms in soils. The amounts of biomass C, N and P in the fallowed soils varied with the tillage methods; they were much greater under NT than under CT, especially in the surface layer, suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil. 展开更多
关键词 FERTILIZATIOn microbial biomass C n and P tillage management
下载PDF
Effects of Lanthanum on Microbial Biomass Carbon and Nitrogen in Red Soil 被引量:1
7
作者 褚海燕 朱建国 +3 位作者 谢祖彬 曹志洪 李振高 曾青 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第1期63-66,共4页
The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of ric... The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of rice pot culture experiment shows that low concentration of La has slight stimulative effect on the microbial biomass C and N in red soil, but its high concentration has inhibitory effect and the inhibition is strengthened with increasing concentration of La. Soil microbial biomass is an important indicator for evaluating rare earths-polluted soil. It is assumed that the critical La concentration is 100 mg.kg(-1) at which red soil tends to be polluted. 展开更多
关键词 rare earths LAnTHAnUM red soil microbial biomass C microbial biomass n
下载PDF
Influence of chlorsulfuron herbicide on size of microbial biomass in the soil 被引量:1
8
作者 El-Ghamry, A.M. Huang, Chang-Yong Xu, Jian-Ming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第2期13-18,共6页
A laboratory incubation experiment was conducted to study the effect of chlorsulfuron herbicide on the size of the microbial in loamy sand soil. The herbicide was applied, at four levels that were control, field rate ... A laboratory incubation experiment was conducted to study the effect of chlorsulfuron herbicide on the size of the microbial in loamy sand soil. The herbicide was applied, at four levels that were control, field rate 0\^01 (FR), 0\^1 (10FR) and 1 (100FR) μg/g. Determinations of microbial biomass C content and microbial biomass N content were carried out 1, 3, 5, 7, 10, 15, 25 and 45 days after herbicide application. In comparison to untreated soil, the microbial biomass carbon and biomass nitrogen decreased significantly in soil treated with herbicide in levels 10FR and 100FR within the first 10 days incubation. A more considerable increase in the microbial biomass C∶N ratio was observed in the herbicide treated soil than the non treated control. This effect was transitory and only at the higher rates of chlorsulfuron was significant. 展开更多
关键词 CHLORSULFUROn microbial biomass C microbial biomass n biomass C/n CLC number: X592 Document code: A
下载PDF
Effect of Ammonium Fixation on Determination of N Mineralized from Soil Microbial Biomass 被引量:2
9
作者 YINSHIXUE LIANGYONGCHAO 《Pedosphere》 SCIE CAS CSCD 1997年第2期127-132,共6页
Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass.... Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass. organism suspellsioll was quantitatively introduced to Soil 1 at various rates. Both fumigation-incubation (FI) and fumigation-ext raction (FE ) met hods were used to t reat t he soil. The amount of ffeedNH4+-N increased with increasing rate of organism-N addition. A close correlation was found between theamoun of fixed aznmonium and the rate of organism-N addition. The net increso of fixed NH4+-N wereequivalent to 38% and 12% of the added organism-N for FI and FE treatments, respectively in this specificsoil. To provide isotopic evidence, 15N-labelled organism-N was added to Soils 1 and 2 at 121.4 mg N kg-1.In FI treatment, 22 and 3 mg N kg-1 of labelled N were found in the fraction of fixed NH4+-N in Soils 1 and2 respectively; while in FE treatment, 9 mg N kg-1 of labelled N was found in the fraction of fixed NH4+-Nin Soil 1 only. There was no labelled N in the fraction of fixed NH4+-N in Soil 2. In all of the unfumigated(check) soils, there was little or no labelled N in the fixed fractions, probably because the organism-N addedwas easily mineralized and nitrified. A mean of 0.64 for KN value, the fraction of N ndneralized in the killedmicrobial biomass, was obtained with inclusion of the net increase of fixed NH4+-N. The corresponding valuecalculated with exclusion of the net increase of fixed NH4+-N was 0.46. It was concluded that ammniumfixation was a problem in determination of KN, particularly for soils with a high ammonium fixation capacity.Results also showed that microbial biomass N measurement by FE method was less affected by ammoniumprocess than that by FI method. 展开更多
关键词 ammonium fixation fumigated soil microbial biomass n
下载PDF
Contrasting resilience of soil microbial biomass,microbial diversity and ammonification enzymes under three applied soil fumigants 被引量:2
10
作者 SUN Zhen-cai LI Gui-tong +3 位作者 ZHANG Cheng-lei WANG Zhi-min LIN Qi-mei ZHAO Xiao-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第10期2561-2570,共10页
Fumigation is a widely applied approach to mitigate the soil-borne diseases.However,the potential effects of currently applied fumigants on ammonification remain unclear.An 84-day incubation experiment was conducted b... Fumigation is a widely applied approach to mitigate the soil-borne diseases.However,the potential effects of currently applied fumigants on ammonification remain unclear.An 84-day incubation experiment was conducted based on non-fumigated soil(CK)and fumigated soil using three common fumigants,i.e.,chloropicrin(CP),1,3-dichloropropene(1,3-D),and metam sodium(MS).The results showed that,the three fumigants all decreased the microbial C,and the largest reduction(84.7%)occurred with the application of CP.After fumigation,the microbial diversity in the CP treatment rapidly recovered,but that in the 1,3-D treatment decreased and did not recover by the end of the experiment.The application of MS showed no impact on the microbial diversity during the assay,indicating that significantly different microbial diversity can be achieved by choosing different fumigants.Futhermore,the three fumigants showed divergent effects on the enzymes involved in ammonification.The analysis showed that the enzyme variation with CP application was mainly associated with the changed microbial C and N(P<0.05),and not with the microbial community,which was different from the observed effects of 1,3-D or MS application.In addition,the soil quality index showed that CP was still significantly harmful at the end of incubation compared with the good resilience of MS,indicating that CP may not be a suitable fumigant. 展开更多
关键词 CHLOROPICRIn 1 3-dichloropropene metam sodium n cycling microbial biomass and diversity
下载PDF
The Fluxes of Organic C and N, and Microbial Biomass and Maize Yield in an Organically Manured Ultisol of the Guinea Savanna Agroecological Zone of Nigeria
11
作者 S. O. Agele S. O. Ojeniyi S. K. Ogundare 《Journal of Agricultural Chemistry and Environment》 2015年第4期83-95,共13页
Field experiments were conducted to evaluate the effects of integrated use of agricultural wastes and a compound mineral fertilizer on the fluxes of soil nutrients. Agricultural wastes applied were: livestock manure (... Field experiments were conducted to evaluate the effects of integrated use of agricultural wastes and a compound mineral fertilizer on the fluxes of soil nutrients. Agricultural wastes applied were: livestock manure (cow dung and poultry litter), shoots of Chromolaena odorata and Parkia biglosa (locust bean), Neem (Azadiracta inidca) seed powder/cake and melon shell. These materials were applied at zero (control), 100% (i.e. organic wastes applied at the recommended rates of 10 t/ha) and 70% of their recommended rates plus 30% of the recommended rate of the mineral fertilizer (NPK: 400 Kg/ha). Average values of soil organic carbon (SOC) were 1.94, 1.68, 1.36 and 1.38 for organic wastes alone, organic waste plus mineral fertilizer (NPK) and unamended control. Mineral N ( N plus N) pools were relatively high at 30 and 60 days after planting, and were significantly higher for organically amended soils (550) and wastes applied at reduced rates combined with 120 kg/ha mineral NPK (470) than the unamended control (277). Across sampling dates, SOC values were the highest in poultry manure and neem seed cake. The values of N plus exchangeable N which constitutes plant available nitrogen (PAN) were significantly higher for organically amended soils and wastes applied at reduced rates combined with 120 kg/ha mineral NPK than the unamended control. The % C microbial to C organic ratio was higher in organically amended soils. The temporal profile of SOC, NH4-N and NO3-N showed declines with time, the relationship was linear for SOC (Y = 0.18x + 1.07;R2 = 0.34), by a power function for N (Y = 48.084x-1.79;R2 = 0.91) and a polynomial function for NH4-N (Y = -28.75x + 130.65x - 57.25;R2 = 0.61). The time dynamics of microbial population (cfu) followed trends obtained for SOC. 展开更多
关键词 Organic Carbon Mineral n microbial biomass SAVAnnA ULTISOL TROPICS
下载PDF
Size of Microbial Biomass in Soils of China
12
作者 WANG YAN, SHEN QIRONG, YANG ZHENGNING and YU LING(Nanjing Agricultural Univertity, Nanjing 210095(China)) 《Pedosphere》 SCIE CAS CSCD 1994年第3期265-272,共8页
he microbial biomass C, N and P of soils all over china were determined in this study to study theiraffecting factors. The results, about 100-417 mg C kg ̄(-1) soil, 18.51 mg N kg ̄(-1) soil and 4.4-27.3 mg Pkg ̄(-1) ... he microbial biomass C, N and P of soils all over china were determined in this study to study theiraffecting factors. The results, about 100-417 mg C kg ̄(-1) soil, 18.51 mg N kg ̄(-1) soil and 4.4-27.3 mg Pkg ̄(-1) soil, showed the biomass C, N and P in linear relationship with the soil total organic C, toal N andsoil organic P. The ratios of C: N and C: P , ranging from 5.6 to 9.6 and from 11.2 to 48.4 respectively, wereaffected by soil pH, texture, crop rotation, macrocliniatc. etc. The ratio of C:N in soil biomass increasesgradually from the north to the south in China. 展开更多
关键词 fumigation-extraction C:n and C.P ratios. SOIL microbial biomass
全文增补中
Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest 被引量:7
13
作者 Serdar Akburak Yowhan Son +1 位作者 Ender Makineci Meric Cakir 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期683-692,共10页
Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low... Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences. 展开更多
关键词 C/n Exchangeable cations microbial biomass carbon qCO_2 Soil pH
下载PDF
^(15)N交叉标记有机与无机肥料氮的转化与残留 被引量:20
14
作者 彭佩钦 仇少君 +2 位作者 侯红波 李恩尧 丘亚群 《生态学报》 CAS CSCD 北大核心 2011年第3期858-865,共8页
有机无机肥配施能够培肥土壤,改善土壤氮素供给,但目前有机无机肥配施主要集中在化肥氮的研究,忽略秸秆氮对化肥氮转化的影响。为了解秸秆还田对不同氮源转化和残留的影响,采用15N对尿素和水稻秸秆进行交叉标记,在两种不同肥力水稻土(... 有机无机肥配施能够培肥土壤,改善土壤氮素供给,但目前有机无机肥配施主要集中在化肥氮的研究,忽略秸秆氮对化肥氮转化的影响。为了解秸秆还田对不同氮源转化和残留的影响,采用15N对尿素和水稻秸秆进行交叉标记,在两种不同肥力水稻土(粘土矿物类型为1∶1型红黄泥和2∶1型紫潮泥)进行水稻盆栽试验。设置对照(CK),单施尿素(15NU)、标记尿素与稻草配施(15NU-S)和标记稻草与尿素配施(15NS-U)4个处理。结果表明,水稻吸收的氮素60%以上来自土壤氮,土壤氮素肥力相对较低的红黄泥较之紫潮泥对肥料氮的依赖更强;水稻生长期间微生物同化的尿素氮占标记底物的百分数红黄泥为1.8%-8.3%,紫潮泥为1.8%—19.2%;微生物同化的秸杆氮占标记底物的百分数红黄泥为1.7%-5.0%,紫潮泥为2.0%-6.2%。而粘土矿物固持的尿素氮占标记底物的百分数,红黄泥为0.3%-2.1%,紫潮泥为3.5%-18.7%;粘土矿物固持的秸杆氮红黄泥为0.2%-0.9%,紫潮泥为1.7%-5.0%。水稻成熟期尿素氮的残留率,红黄泥15NU处理、15NU+S分别为14.5%和17.0%,紫潮泥分别为16.9%和17.1%。秸秆氮的残留率分别为红黄泥38.8%、紫潮泥41.5%;有机无机肥配施提高了微生物同化化肥氮的能力,降低了粘土矿物晶格固持化肥氮的水平。有机无机配施提高了化肥氮利用率同时,提高了有机形态氮残留,降低了无机形态氮(矿质氮+固定态铵)的残留。 展开更多
关键词 尿素 水稻秸秆 有机无机肥配施 土壤微生物量氮 固定态铵 15n标记 氮的残留 红黄泥 紫潮泥
下载PDF
^(14)C、^(15)N双标记秸秆对土壤微生物量碳、氮动态变化的影响 被引量:9
15
作者 王志明 朱培立 黄东迈 《江苏农业学报》 CSCD 北大核心 1999年第3期173-176,共4页
用密闭培养和熏蒸提取法,研究14 C、1 5 N 标记秸秆对红壤和变性土中原有土壤微生物量及其 C/ N 动态变化的影响。结果表明,施加秸秆可增加原有土壤微生物量,原有土壤微生物量 C和 N 在培养初期很快即达最大值,以... 用密闭培养和熏蒸提取法,研究14 C、1 5 N 标记秸秆对红壤和变性土中原有土壤微生物量及其 C/ N 动态变化的影响。结果表明,施加秸秆可增加原有土壤微生物量,原有土壤微生物量 C和 N 在培养初期很快即达最大值,以后逐渐减少并趋于稳定。原有微生物量 C减少程度大于原有微生物量 N。虽然加入外源基质,土壤原有 C、 N仍是微生物能源和养分的主要供给者。土壤微生物量的 C/ N 值,红壤为672~1104;变性土为470~730,加入秸秆可导致这一比值降低。 展开更多
关键词 秸秆 土壤微生物量碳 土壤微生物量氮 土壤
下载PDF
Assessment of bacterial biomass in the highly contaminated urban Nanming River,Guiyang,SW China 被引量:1
16
作者 Hao Xiao Hua-Yun Xiao Pan Wu 《Acta Geochimica》 EI CAS CSCD 2017年第4期638-644,共7页
High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers.To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions... High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers.To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions of suspended particulate organic matter(SPOM) and bacteria in a highly contaminated urban river(the Nanming)and effluents in winter and summer of 2013. Relative to SPOM, bacterial biomass in the river was depleted in ^(13)C and ^(15)N and its C/N ratio was lower(δ^(13)C:-33.2% ± 3.1%; δ^(15)N:-1.5% ± 1.2%; C/N:4.8 ± 0.6), while effluents showed higher ^(13)C and ^(15)N contents and C/N ratios(δ^(13)C:-25% ± 2.1%; δ ^(15)N:-8.5% ± 1.1%; C/N: 8.1 ± 1.2). Source recognition of SPOM was based on carbon isotopes because they are conservative and distinct between end-members(effluent detritus and bacterial biomass). Using a mixing model,bacterial biomass in the river was calculated to account for <20% and <56% of bulk suspended particulate organic nitrogen in winter and summer, respectively. An N budget showed that bacterial N was a small proportion of total nitrogen(<7.4%) in the riverwater. 展开更多
关键词 Δ^13C δ^15C Bacterial biomass n budget nanming River
下载PDF
免耕与留茬对土壤微生物量C、N及酶活性的影响 被引量:81
17
作者 孙建 刘苗 +2 位作者 李立军 刘景辉 张星杰 《生态学报》 CAS CSCD 北大核心 2009年第10期5508-5515,共8页
2005~2008年在内蒙古呼和浩特市清水河县进行定位试验,设免耕留低茬(NL)、免耕留高茬覆盖(NHS)和传统耕翻(T)3种耕作处理方式。结果表明:(1)免耕留高茬覆盖及免耕留低茬长期实施,能显著提高表层土壤有机质、全氮、全钾、碱解氮、速效... 2005~2008年在内蒙古呼和浩特市清水河县进行定位试验,设免耕留低茬(NL)、免耕留高茬覆盖(NHS)和传统耕翻(T)3种耕作处理方式。结果表明:(1)免耕留高茬覆盖及免耕留低茬长期实施,能显著提高表层土壤有机质、全氮、全钾、碱解氮、速效磷和速效钾含量,且免耕留高茬覆盖处理比传统耕翻分别提高了11%、41%、22%、15%、29%、27%、13%;在测定各个时期内,土壤各营养指标含量整体趋势为NHS>NL>T。(2)免耕留高茬覆盖及免耕留低茬耕作方式有利于提高土壤微生物量C、N含量,在各测定时期均以免耕留高茬覆盖处理的土壤微生物量C、N含量最高,传统耕翻最低。与传统耕翻相比,免耕留高茬覆盖处理土壤微生物量C、N含量分别平均提高了69%、43%;测定各个时期,不同处理土壤生物量C、N含量均以7月份含量最高、5月份次之、10月份最低。(3)免耕留高茬覆盖及免耕留低茬处理土壤碱性磷酸酶、蔗糖酶、过氧化氢酶活性和脲酶活性高于传统耕翻,整个测定期内免耕留高茬覆盖处理4种酶平均活性,分别较传统耕翻增加了57%、82%、93%和25%;春季土壤酶活性开始增强,在7月份蔗糖酶、过氧化氢酶和脲酶活性达到最大值,而碱性磷酸酶的峰值出现在6月份。土壤微生物量C、N及土壤酶活性是评价土壤质量的重要因子。 展开更多
关键词 免耕 留茬 土壤微生物量C 土壤微生物量n 土壤酶活性
下载PDF
有机、无机肥料施用后土壤生物量C、N、P的变化及N素转化 被引量:99
18
作者 王岩 沈其荣 +1 位作者 史瑞和 黄东迈 《土壤学报》 CAS CSCD 北大核心 1998年第2期227-234,共8页
研究结果表明,有机、无机肥施用后,土壤微生物量C、N、P开始增加很快,随着时间的推移,土壤微生物量C又有所降低,但生物量N和P则基本保持稳定。硫铵施入土壤后,微生物对肥料(15)N的生物固持10天后达到最高峰,以后被固持在体内的(1... 研究结果表明,有机、无机肥施用后,土壤微生物量C、N、P开始增加很快,随着时间的推移,土壤微生物量C又有所降低,但生物量N和P则基本保持稳定。硫铵施入土壤后,微生物对肥料(15)N的生物固持10天后达到最高峰,以后被固持在体内的(15)N有一部分被逐渐释放出来,但一个月后仍有17%左右的(15)N被固持在微生物体内。硫铵与有机肥配合施用时,微生物对硫铵(15)N固持比例有所增加。有机肥中的15N被微生物固持的比例也较大,在肥料施入20天左右达到最大值,一个月后仍有19—25%存在于微生物体内。硫铵施用一个月后(15)N损失高达18%,有机肥中的N也有少量被损失。 展开更多
关键词 土壤微生物量 氮素转化 有机肥料 无机肥料
下载PDF
人工油松林(Pinus tabulaeformis)恢复过程中土壤微生物生物量C、N的变化特征 被引量:60
19
作者 刘占锋 刘国华 +3 位作者 傅伯杰 胡会峰 郑晓翾 吴雅琼 《生态学报》 CAS CSCD 北大核心 2007年第3期1011-1018,共8页
采用时空替代法,选取15a(PF15)、25a(PF25)、30a(PF30)的人工油松林作为样地,并选取灌丛作为参考植被,研究了植被恢复过程中土壤微生物生物量C、N以及土壤养分的变化特征,同时探讨了它们之间的相互关系。研究结果表明随着恢复的进... 采用时空替代法,选取15a(PF15)、25a(PF25)、30a(PF30)的人工油松林作为样地,并选取灌丛作为参考植被,研究了植被恢复过程中土壤微生物生物量C、N以及土壤养分的变化特征,同时探讨了它们之间的相互关系。研究结果表明随着恢复的进行,土壤质量得到了改善,主要表现为有机碳、全氮、粘粒含量、土壤含水量的上升和pH值、容重的下降。土壤微生物生物量C、N分别在155.00~885.64mg/kg和33.73~237.40mg/kg的范围内变化。土壤微生物生物量C、N在植被恢复的初期显著低于灌丛,而后随着恢复的进行逐步增长。土壤微生物生物量C、N与植被恢复时间的相关性没有达到统计学上的显著水平,但是土壤微生物生物量C与土壤有机碳、全氮、全磷呈显著正相关,这表明植被恢复过程中土壤微生物生物量与土壤养分状况关系密切,植被恢复通过改善土壤养分状况间接地影响土壤微生物生物量的变化。Cmic/TOC在1.38%~4.75%的范围内变化。Cmic/TOC随着植被恢复不断下降,Cmic/TOC与植被恢复时间和土壤有机碳呈显著负相关,这表明植被恢复过程中,惰性有机质积累导致供应土壤微生物的活性有机质减少,Cmic/TOC同时受土壤有机质的数量和质量影响。 展开更多
关键词 土壤微生物生物量C 土壤微生物生物量n 土壤理化性质 恢复年限 人工油松
下载PDF
土壤微生物对气候变暖和大气N沉降的响应 被引量:61
20
作者 张乃莉 郭继勋 +1 位作者 王晓宇 马克平 《植物生态学报》 CAS CSCD 北大核心 2007年第2期252-261,共10页
气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是... 气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上,而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。 展开更多
关键词 气候变暖 大气n沉降 土壤微生物量 土壤微生物活动 土壤微生物群落结构
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部