The effects of supplementing 50%of the mineral N fertilizer with organic fertilizer on the metabolism and diversity of soil microbial communities in an oat field were investigated using Biolog-Eco plates.The experimen...The effects of supplementing 50%of the mineral N fertilizer with organic fertilizer on the metabolism and diversity of soil microbial communities in an oat field were investigated using Biolog-Eco plates.The experiment consisted of five treatments:no fertilizer(CK),mineral N fertilizer applied at 90 and 45 kg ha^(-1) N in the form of urea(U1 and U2,respectively),and U2 supplemented with organic fertilizer in the form of sheep manure at 90 and 45 kg ha^(-1) N(U2OM1 and U2OM2,respectively).Each treatment had three replications.The experiment was conducted in 2018 and 2019 in Pinglu District,Shanxi Province,China.The carbon source utilization by soil microbial communities,such as amino acids,amines,carbohydrates,carboxylic acids,and polymers,increased when 50%of the mineral N fertilizer was replaced with organic fertilizer in both years.This result was accompanied by increased richness,dominance,and evenness of the microbial communities.The utilization of amino acid,amine,and carboxylic acid carbon sources and community evenness were further improved when the organic fertilizer amount was doubled in both years.Biplot analysis indicated that amines and amino acids were the most representative of the total carbon source utilization by the soil microbial communities in both years.The highest oat yield was achieved at a total N application rate of 135 kg ha^(-1) in the treatment involving 45 kg ha^(-1) N in the form of urea and 90 kg ha^(-1) N in the form of sheep manure in both years.It was concluded that the application of 50%of the conventional rate of mineral N fertilizer supplemented with an appropriate rate of organic fertilizer enhanced both the functional diversity of soil microbial communities and oat yield.Amine and amino acid carbon sources may be used as a substitute for total carbon sources for assessing total carbon source utilization by soil microbial communities in oat fields in future studies.展开更多
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ...Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource.展开更多
Like straw, biochar incorporation can influence soil microorganisms and enzyme activities and soil carbon(C) responses;however,few studies have compared the various effects of straw and biochar and the underlying mech...Like straw, biochar incorporation can influence soil microorganisms and enzyme activities and soil carbon(C) responses;however,few studies have compared the various effects of straw and biochar and the underlying mechanisms. An experiment was performed to study the changes in soil respiration(SR) and soil organic C(SOC) fluxes in response to the incorporation of three kinds of straw(reed, smooth cordgrass, and rice) and their pyrolyzed products(biochars) at Chongming Island, China. In addition, the microbial activity and community structure of some amended soils were also analyzed to clarify the mechanisms of these responses. The results showed that all biochar incorporation(BC) induced lower SR than the corresponding unpyrolyzed straw incorporation(ST), and the average SR in the soils following BC and ST during the experimental periods was 21.69 and 65.32 μmol CO2 m^-2s^-1, respectively.Furthermore, the average SOC content was 16.97 g kg-1 following BC, which was higher than that(13.71 g kg-1) following ST,indicating that compared to ST, BC was a low-C strategy, even after accounting for the C loss during biochar production. Among the BC treatments, reed-BC induced the lowest SR(17.04 μmol CO2 m^-2s^-1), whereas smooth cordgrass-BC induced the highest SR(27.02 μmol CO2 m^-2s^-1). Furthermore, in contrast with ST, BC significantly increased the abundance of some bacteria with poorer mineralization or better humification ability, which led to lower SR. The lower easily oxidizable C(EOC) and higher total C contents of biochars induced lower SR and higher SOC in the soil following BC compared to that following ST. Among the BC treatments,the higher total nitrogen content of rice biochar led to significantly higher soil microbial biomass, and the lower EOC content of reed biochar led to lower soil microbial activity and SR.展开更多
Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon(C),nitrogen(N),and phosphorus(P)metabolisms in response to agricultural nutrient management.To determine the roles of f...Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon(C),nitrogen(N),and phosphorus(P)metabolisms in response to agricultural nutrient management.To determine the roles of fertilization and residue return with respect to ecological stoichiometry,we collected soil samples from a 30-year field experiment on residue return(maize straw)at rates of 0,2.5,and 5.0 Mg ha^-1 in combination with 8 fertilization treatments:no fertilizer(F0),N fertilizer,P fertilizer,potassium(K)fertilizer,N and P(NP)fertilizers,N and K(NK)fertilizers,P and K(PK)fertilizers,and N,P,and K(NPK)fertilizers.We measured soil organic C(SOC),total N and P,microbial biomass C,N,and P,water-soluble organic C and N,KMnO4-oxidizabIe C(KMnO4-C),and carbon management index(CMI).Compared with the control(F0 treatment without residue return),fertilization and residue return significantly increased the KMn〇4-C content and CMI.Furthermore,compared with the control,residue return significantly increased the SOC content.Moreover,the NPK treatment with residue return at 5.0 Mg ha^-1 significantly enhanced the C:N,C:P,and N:P ratios in the soil,whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass.Therefore,NPK fertilizer application combined with residue return at 5.0 Mg ha^-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms.Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.展开更多
基金This research was supported by the Key Research and Development Program of Shanxi Province,China(201703D211001-03-01 and 201703D211001-03-03)and the Key Research and Development Program of Shanxi Province,China(201903D221061).
文摘The effects of supplementing 50%of the mineral N fertilizer with organic fertilizer on the metabolism and diversity of soil microbial communities in an oat field were investigated using Biolog-Eco plates.The experiment consisted of five treatments:no fertilizer(CK),mineral N fertilizer applied at 90 and 45 kg ha^(-1) N in the form of urea(U1 and U2,respectively),and U2 supplemented with organic fertilizer in the form of sheep manure at 90 and 45 kg ha^(-1) N(U2OM1 and U2OM2,respectively).Each treatment had three replications.The experiment was conducted in 2018 and 2019 in Pinglu District,Shanxi Province,China.The carbon source utilization by soil microbial communities,such as amino acids,amines,carbohydrates,carboxylic acids,and polymers,increased when 50%of the mineral N fertilizer was replaced with organic fertilizer in both years.This result was accompanied by increased richness,dominance,and evenness of the microbial communities.The utilization of amino acid,amine,and carboxylic acid carbon sources and community evenness were further improved when the organic fertilizer amount was doubled in both years.Biplot analysis indicated that amines and amino acids were the most representative of the total carbon source utilization by the soil microbial communities in both years.The highest oat yield was achieved at a total N application rate of 135 kg ha^(-1) in the treatment involving 45 kg ha^(-1) N in the form of urea and 90 kg ha^(-1) N in the form of sheep manure in both years.It was concluded that the application of 50%of the conventional rate of mineral N fertilizer supplemented with an appropriate rate of organic fertilizer enhanced both the functional diversity of soil microbial communities and oat yield.Amine and amino acid carbon sources may be used as a substitute for total carbon sources for assessing total carbon source utilization by soil microbial communities in oat fields in future studies.
基金funded by the National Natural Science Foundation of China(NSFC31301843)the National Nonprofit Institute Research Grant of Chinese Academy of Agricultural Sciences(IARRP-202-5)
文摘Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource.
基金financially supported by the National Natural Science Foundation of China(No.215-77101)the National Key R&D Program of China(No.2017YFC0506004)the Science and Technology Developmental Fund Projects of Pudong District,China(No.PKJ2015-C11)
文摘Like straw, biochar incorporation can influence soil microorganisms and enzyme activities and soil carbon(C) responses;however,few studies have compared the various effects of straw and biochar and the underlying mechanisms. An experiment was performed to study the changes in soil respiration(SR) and soil organic C(SOC) fluxes in response to the incorporation of three kinds of straw(reed, smooth cordgrass, and rice) and their pyrolyzed products(biochars) at Chongming Island, China. In addition, the microbial activity and community structure of some amended soils were also analyzed to clarify the mechanisms of these responses. The results showed that all biochar incorporation(BC) induced lower SR than the corresponding unpyrolyzed straw incorporation(ST), and the average SR in the soils following BC and ST during the experimental periods was 21.69 and 65.32 μmol CO2 m^-2s^-1, respectively.Furthermore, the average SOC content was 16.97 g kg-1 following BC, which was higher than that(13.71 g kg-1) following ST,indicating that compared to ST, BC was a low-C strategy, even after accounting for the C loss during biochar production. Among the BC treatments, reed-BC induced the lowest SR(17.04 μmol CO2 m^-2s^-1), whereas smooth cordgrass-BC induced the highest SR(27.02 μmol CO2 m^-2s^-1). Furthermore, in contrast with ST, BC significantly increased the abundance of some bacteria with poorer mineralization or better humification ability, which led to lower SR. The lower easily oxidizable C(EOC) and higher total C contents of biochars induced lower SR and higher SOC in the soil following BC compared to that following ST. Among the BC treatments,the higher total nitrogen content of rice biochar led to significantly higher soil microbial biomass, and the lower EOC content of reed biochar led to lower soil microbial activity and SR.
基金This research was financially supported by the Special Foundation for State Major Basic Research Program of China(No.2016YFC0501202)the Special Foundation for Basic Research Program in Soil of Chinese Academy Sciences(Nos.XDB 15030103 and XDA23070501)+2 种基金the National Natural Science Foundation of China(Nos.41920104008 and 41701332)the Key Laboratory Foundation of Mollisols Agroecology(No.2016ZKHT-05)the 135 Project of Northeast Institute of Geography and Agroecology of Chinese Academy Sciences(No.Y6H2043001).
文摘Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon(C),nitrogen(N),and phosphorus(P)metabolisms in response to agricultural nutrient management.To determine the roles of fertilization and residue return with respect to ecological stoichiometry,we collected soil samples from a 30-year field experiment on residue return(maize straw)at rates of 0,2.5,and 5.0 Mg ha^-1 in combination with 8 fertilization treatments:no fertilizer(F0),N fertilizer,P fertilizer,potassium(K)fertilizer,N and P(NP)fertilizers,N and K(NK)fertilizers,P and K(PK)fertilizers,and N,P,and K(NPK)fertilizers.We measured soil organic C(SOC),total N and P,microbial biomass C,N,and P,water-soluble organic C and N,KMnO4-oxidizabIe C(KMnO4-C),and carbon management index(CMI).Compared with the control(F0 treatment without residue return),fertilization and residue return significantly increased the KMn〇4-C content and CMI.Furthermore,compared with the control,residue return significantly increased the SOC content.Moreover,the NPK treatment with residue return at 5.0 Mg ha^-1 significantly enhanced the C:N,C:P,and N:P ratios in the soil,whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass.Therefore,NPK fertilizer application combined with residue return at 5.0 Mg ha^-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms.Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.