期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
Comparison of Di-n-methyl Phthalate Biodegradation by Free and Immobilized Microbial Cells 被引量:20
1
作者 JIANLONGWANG YU-CAIYE WEI-ZHONGWU 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2003年第2期126-132,共7页
To compare the biodegradation of di-n-methyl pathalate by free and immobilized microbial cells. Methods The enrichment and isolation technique was used to isolate the microorganism. The PAV-entrapment method was uti... To compare the biodegradation of di-n-methyl pathalate by free and immobilized microbial cells. Methods The enrichment and isolation technique was used to isolate the microorganism. The PAV-entrapment method was utilized to immobilize the microorganisms. The scanning electron microscophy (SEM) was used to observe the growth and distribution of microbial cells immobilized inside the PVA bead gels. The GC/MS method was used to identify the main intermediates of DMP degradation. Results The microbial cells could grow quite well in PVA gel. The metabolic pathway did not change before and after immobilization of the microbial cells. The degradation rate of immobilized cells was higher than that of free cells. Conclusion The immobilized microbial cells possess advantages than free cells when applied to the biodegradation of toxic organic pollutants. 展开更多
关键词 Priority pollutants Phthalic acid ester Immobilized microbial cells BIODEGRADATION
下载PDF
Tailoring Iron-Ion Release of Cellulose-Based Aerogel-Coated Iron Foam for Long-Term High-Power Microbial Fuel Cells
2
作者 Zhengyang Ni Huitao Yu +6 位作者 Haoran Wang Mengmeng Qin Feng Li Hao Song Xiangyu Chen Yiyu Feng Wei Feng 《Transactions of Tianjin University》 EI CAS 2024年第5期436-447,共12页
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ... The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation. 展开更多
关键词 microbial fuel cells Coating Fe ions Tailor release LONG-TERM
下载PDF
The biofilm characteristics and enhanced performance of a marine microbial-electrolysis-cell-based biosensor under positive anodic potential
3
作者 CAO Yuanyuan ZHANG Chaoqun +2 位作者 LIU Xiang CHENG Liang YANG Yang 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第6期221-230,共10页
Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,t... Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,two identical microbial electrolysis cell(MEC)based biosensors were inoculated with marine sediment and operated at two different anodic potentials,namely-300 mV and+250 mV relative to Ag/AgCl.The MEC biosensor operated under positive anodic potential conditions had electrochemically active microbial communities on the anode,including members of the Shewanellaceae,Pseudoalteromonadaceae,and Clostridiaceae families.However,the strictly anaerobic members of the Desulfuromonadaceae,Desulfobulbaceae and Desulfobacteraceae families were found only in the negative anodic potential MEC biosensor.The positive anodic potential MEC biosensor showed several other advantages as well,such as faster start-up,significantly higher maximum current production,fivefold improvement in the AOC detection limit,and tolerance of low dissolved oxygen,compared to those obtained from the negative anodic potential MEC biosensor.The developed positive anodic potential MEC biosensor can thus be used as a real-time and inexpensive detector of AOC concentrations in high saline and low DO seawater. 展开更多
关键词 BIOSENSOR microbial fuel cell anodic potential marine biofilm assimilable organic carbon
下载PDF
Hydrogen production performance of the non⁃platinum⁃based MoS_(2)/CuS cathode in microbial electrolytic cells
4
作者 HAO Pingping LI Fangfang +5 位作者 WANG Yawen LI Houfen ZHANG Xiao LI Rui WANG Lei LIU Jianxin 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第9期1811-1824,共14页
MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-d... MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-duction performance of MoS_(2)/CuS prepared with different molar ratios of Mo to Cu precursors(n_(Mo)∶n_(Cu))as cathodic catalysts was investigated in the two-chamber microbial electrolytic cell(MEC).X-ray diffraction(XRD),X-ray pho-toelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscope(TEM),linear scanning voltammetry(LSV),electrochemical impedance analysis(EIS),and cyclic voltammetry(CV)were used to characterize the synthesized catalysts for testing and analyzing the hydrogen-producing performance.The results showed that the hydrogen evolution performance of MoS_(2)/CuS-20%(nMo∶nCu=5∶1)was better than that of platinum(Pt)mesh,and the hydrogen production rate of MoS_(2)/CuS-20%as a cathode in MEC was(0.2031±0.0237)m^(3)_(H_(2))·m^(-3)·d^(-1) for 72 h at an applied voltage of 0.8 V,which was slightly higher than that of Pt mesh of(0.1886±0.0134)m^(3)_(H_(2))·m^(-3)·d^(-1).The addition of a certain amount of CuS not only regulates the electron transfer ability of MoS_(2) but also increases the density of active sites. 展开更多
关键词 microbial electrolysis cell hydrogen evolution reaction MoS_(2)/CuS composite catalyst Pt mesh
下载PDF
Electricity generation during wastewater treatment by a microbial fuel cell coupled with constructed wetland 被引量:13
5
作者 李先宁 宋海亮 +1 位作者 项文力 吴磊 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期175-178,共4页
A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable curr... A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation. 展开更多
关键词 constructed wetland microbial fuel cell wastewater treatment electricity generation electrode spacing
下载PDF
Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies 被引量:5
6
作者 Mostafa Basiony Liming Ouyang +11 位作者 Danni Wang Jiaming Yu Liming Zhou Mohan Zhu Xuyuan Wang Jie Feng Jing Dai Yijie Shen Chengguo Zhang Qiang Hua Xiuliang Yang Lixin Zhang 《Synthetic and Systems Biotechnology》 SCIE 2022年第2期689-704,共16页
The global market demand for natural astaxanthin is rapidly increasing owing to its safety,the potential health benefits,and the diverse applications in food and pharmaceutical industries.The major native producers of... The global market demand for natural astaxanthin is rapidly increasing owing to its safety,the potential health benefits,and the diverse applications in food and pharmaceutical industries.The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous.However,the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction.Alternatively,astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli,Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations.In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways,transcriptional regulations,the interrelation with lipid metabolism,engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers.These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale. 展开更多
关键词 ASTAXANTHIN Carotenoids Metabolic engineering microbial cell factories Lipid FERMENTATION ANTIOXIDANTS
原文传递
Magnetically modified microbial cells:A new type of magnetic adsorbents 被引量:2
7
作者 Ivo Safarik Mirka Safarikova 《China Particuology》 SCIE EI CAS CSCD 2007年第1期19-25,共7页
Microbial cells, either in free or immobilized form, can be used for the preconcentration or removal of metal ions, organic and inorganic xenobiotics or biologically active compounds. Magnetic modification of these ce... Microbial cells, either in free or immobilized form, can be used for the preconcentration or removal of metal ions, organic and inorganic xenobiotics or biologically active compounds. Magnetic modification of these cells enables to prepare magnetic adsorbents that can be easily manipulated in difficult-to-handle samples, such as suspensions, in the presence of external magnetic field. In this review, typical examples of magnetic modifications of microbial cells are presented, as well as their possible applications for the separation of organic xenobiotics and heavy metal ions. 展开更多
关键词 microbial cells Magnetic modification Magnetic iron oxide nanoparficles Magnetic adsorbents Magnetic fluids Xenobiotics
原文传递
Design and construction of microbial cell factories based on systems biology 被引量:2
8
作者 Wenlong Yan Zhibei Cao +1 位作者 Mingzhu Ding Yingjin Yuan 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第1期176-185,共10页
Environmental sustainability is an increasingly important issue in industry.As an environmentally friendly and sustainable way,constructing microbial cell factories to produce all kinds of valuable products has attrac... Environmental sustainability is an increasingly important issue in industry.As an environmentally friendly and sustainable way,constructing microbial cell factories to produce all kinds of valuable products has attracted more and more attention.In the process of constructing microbial cell factories,systems biology plays a crucial role.This review summarizes the recent applications of systems biology in the design and construction of microbial cell factories from four perspectives,including functional genes/enzymes discovery,bottleneck pathways identification,strains tolerance improvement and design and construction of synthetic microbial consortia.Systems biology tools can be employed to identify functional genes/enzymes involved in the biosynthetic pathways of products.These discovered genes are introduced into appropriate chassis strains to build engineering microorganisms capable of producing products.Subsequently,systems biology tools are used to identify bottleneck pathways,improve strains tolerance and guide design and construction of synthetic microbial consortia,resulting in increasing the yield of engineered strains and constructing microbial cell factories successfully. 展开更多
关键词 microbial cell factories Systems biology Functional genes/enzymes discovery Bottleneck pathways Strains tolerance Synthetic microbial consortia
原文传递
Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories 被引量:2
9
作者 Pradeepraj Durairaj Shengying Li 《Engineering Microbiology》 2022年第1期17-34,共18页
Cytochrome P450(CYP)enzymes play crucial roles during the evolution and diversification of ancestral monocel-lular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including ca... Cytochrome P450(CYP)enzymes play crucial roles during the evolution and diversification of ancestral monocel-lular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including catalysis of housekeeping biochemical reactions,synthesis of diverse metabolites,detoxification of xenobiotics,and con-tribution to environmental adaptation.Eukaryotic CYPs with versatile functionalities are undeniably regarded as promising biocatalysts with great potential for biotechnological,pharmaceutical and chemical industry applica-tions.Nevertheless,the modes of action and the challenges associated with these membrane-bound proteins have hampered the effective utilization of eukaryotic CYPs in a broader range.This review is focused on comprehen-sive and consolidated approaches to address the core challenges in heterologous expression of membrane-bound eukaryotic CYPs in different surrogate microbial cell factories,aiming to provide key insights for better studies and applications of diverse eukaryotic CYPs in the future.We also highlight the functional significance of the previously underrated cytochrome P450 reductases(CPRs)and provide a rational justification on the progression of CPR from auxiliary redox partner to function modulator in CYP catalysis. 展开更多
关键词 Cytochrome P450 enzymes Cytochrome P450 reductase Membrane-bound proteins N-terminal transmembrane domain Heterologous expression microbial cell factories Redox partners Electron transfer
原文传递
A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation 被引量:9
10
作者 蒋海明 罗生军 +2 位作者 师晓爽 戴萌 郭荣波 《Journal of Central South University》 SCIE EI CAS 2013年第2期488-494,共7页
A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was ... A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass. 展开更多
关键词 wastewater treatment microbial fuel cell PHOTOBIOREACTOR MICROALGAE BIOELECTRICITY
下载PDF
Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment 被引量:11
11
作者 杜竹玮 李清海 +2 位作者 佟萌 李少华 李浩然 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期772-777,共6页
An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic ac... An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m-3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate. 展开更多
关键词 microbial fuel cell membrane-less wastewater treatment
下载PDF
Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells 被引量:5
12
作者 Yang'en Xie Zhaokun Ma +2 位作者 Huaihe Song Zachary A.Stoll Pei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期81-86,共6页
Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carb... Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carbon materials. In this work, heat treatment and melamine were used to modify carbon felts to enhance electrogenesis capacity of MFCs. The modified carbon felts were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM) and malvern zeta potentiometer. Results show that the maximum power densities under heat treatment increase from 276.1 to 423.4 mW/m(2) (700 degrees C) and 461.5 mW/m(2) (1200 degrees C) and further increase to 472.5 mW/m(2) (700 degrees C) and 515.4 mW/m(2) (1200 degrees C) with the co-carbonization modification of melamine. The heat treatment reduces the material resistivity, improves the zeta potential which is beneficial to microbial adsorption and electron transfer. The addition of melamine leads to the higher content of surface pyridinic and quaternary nitrogen and higher zeta potential. It is related to higher MFCs performance. Generally, the melamine modification at high temperature increases the feasibility of carbon felt as MFCs's anode materials. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 microbial fuel cells Anode materials Carbon felts MODIFICATION MELAMINE
下载PDF
Sustainable biochar as an electrocatalysts for the oxygen reduction reaction in microbial fuel cells 被引量:4
13
作者 Shengnan Li Shih-Hsin Ho +3 位作者 Tao Hua Qixing Zhou Fengxiang Li Jingchun Tang 《Green Energy & Environment》 SCIE CSCD 2021年第5期644-659,共16页
Microbial fuel cells(MFCs)have gained remarkable attention as a novel wastewater treatment that simultaneously generates electricity.The low activity of the oxygen reduction reaction(ORR)remains one of the most critic... Microbial fuel cells(MFCs)have gained remarkable attention as a novel wastewater treatment that simultaneously generates electricity.The low activity of the oxygen reduction reaction(ORR)remains one of the most critical bottlenecks limiting the development of MFCs.To date,although research on biochar as an electrocatalyst in MFCs has made tremendous progress,further improvements are needed to make it economically practical.Recently,biochars have been considered to be ORR electrocatalysts with developmental potential.In this review,the ORR mechanism and the essential requirements of ORR catalysts in MFC applications are introduced.Moreover,the focus is to highlight the material selection,properties,and preparation of biochar electrocatalysts,as well as the evaluation and measurement of biochar electrodes.Additionally,in order to provide comprehensive information on the specific applications of biochars in the field of MFCs,their applications as electrocatalysts,are then discussed in detail,including the uses of nitrogen-doped biochar and other heteroatom-doped biochars as electrocatalysts,poisoning tests for biochar catalysts,and the cost estimation of biochar catalysts.Finally,profound insights into the current challenges and clear directions for future perspectives and research are concluded. 展开更多
关键词 BIOCHAR ELECTROCATALYSTS Oxygen reduction reaction microbial fuel cells PYROLYSIS
下载PDF
Nitrogen and Sulfur Co-doped Porous Carbon Derived from ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells 被引量:4
14
作者 HAN Wuli YAN Xuemin +3 位作者 JIANG Yu PING Mei DENG Xiaoqing ZHANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期280-286,共7页
Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S cata... Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC. 展开更多
关键词 ELECTROCATALYST oxygen reduction reaction microbial fuel cells nitrogen and sulfur co-doped
下载PDF
Comparative Study of Two Carbon Fiber Cathodes and Theoretical Analysis in Microbial Fuel Cells on Ocean Floor 被引量:2
15
作者 FU Yubin LIU Yuanyuan +2 位作者 XU Qian LU Zhikai ZHANG Yelong 《Journal of Ocean University of China》 SCIE CAS 2014年第2期257-261,共5页
Cathode activity plays an important role in the improvement of the microbial fuel cells on ocean floor (BMFCs). A comparison study between Rayon-based (CF-R) and PAN-based carbon fiber (CF-P) cathodes is conduct... Cathode activity plays an important role in the improvement of the microbial fuel cells on ocean floor (BMFCs). A comparison study between Rayon-based (CF-R) and PAN-based carbon fiber (CF-P) cathodes is conducted in the paper. The two carbon fibers were heat treated to improve cell performance (CF-R-H & CF-P-H), and were used to build a new BMFCs structure with a foamy carbon anode. The maximum power density was 112.4mWm-2 for CF-R-H, followed by 66.6mWm-2 for CF-R, 49.7 mWm-2 for CF-P-H and 21.6mWm-2 for CF-P respectively. The higher specific area and deep groove make CF-R have a better power output than with CF-P. Meanwhile, heat treatment of carbon fiber can improve cell power, nearly two-fold higher than heat treatment of plain fiber. This improvement may be due to the quinones group formation to accelerate the reduction of oxygen and electron transfer on the fiber surface in the three phase boundary after heat treatment. Compared to PAN-based carbon fiber, Rayon-based carbon fiber would be preferentially selected as cathode in novel BMFCs design due to its high surface area, low cost and higher power. The comparison research is significant for cathode material selection and cell design. 展开更多
关键词 microbial fuel cells on ocean floor carbon fiber cathode heat treatment power density theoretical analysis
下载PDF
Carbon material-based anodes in the microbial fuel cells 被引量:3
16
作者 Xiaoqi Fan Yun Zhou +3 位作者 Xueke Jin Rong-Bin Song Zhaohui Li Qichun Zhang 《Carbon Energy》 CAS 2021年第3期449-472,共24页
For the performance improvement of microbial fuel cells(MFCs),the anode becomes a breakthrough point due to its influence on bacterial attachment and extracellular electron transfer(EET).On other level,carbon material... For the performance improvement of microbial fuel cells(MFCs),the anode becomes a breakthrough point due to its influence on bacterial attachment and extracellular electron transfer(EET).On other level,carbon materials possess the following features:low cost,rich natural abundance,good thermal and chemical stability,as well as tunable surface properties and spatial structure.Therefore,the development of carbon materials and carbon-based composites has flourished in the anode of MFCs during the past years.In this review,the major carbon materials used to decorate MFC anodes have been systematically summarized,based on the differences in composition and structure.Moreover,we have also outlined the carbon material-based hybrid biofilms and carbon material-modified exoelectrogens in MFCs,along with the discussion of known strategies and mechanisms to enhance the bacteria-hosting capabilities of carbon material-based anodes,EET efficiencies,and MFC performances.Finally,the main challenges coupled with some exploratory proposals are also expounded for providing some guidance on the future development of carbon material-based anodes in MFCs. 展开更多
关键词 carbon materials cell surface modification extracellular electron transfer hybrid biofilm microbial fuel cells
下载PDF
Microbial Electrolysis Cells for Hydrogen Production 被引量:2
17
作者 Li-juan Xiang Ling Dai +3 位作者 Ke-xin Guo Zhen-hai Wen Su-qin Ci Jing-hong Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第3期263-284,I0002,共23页
Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microb... Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microbial electrocatalysis.However,the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost.In this review,we will focus on the recent research progress of MEC for H2 production.First,we present a brief introduction of MEC technology and the operating mechanism for H2 production.Then,the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed.We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation.Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance. 展开更多
关键词 microbial electrolysis cells H2 production ELECTROCATALYSIS Wastewater treatment Electrode materials
下载PDF
A Comprehensive Review on Oxygen Reduction Reaction in Microbial Fuel Cells 被引量:2
18
作者 Pooja Dange Nishit Savla +5 位作者 Soumya Pandit Rambabu Bobba Sokhee P.Jung Piyush Kumar Gupta Mohit Sahni Ram Prasad 《Journal of Renewable Materials》 SCIE EI 2022年第3期665-697,共33页
The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved ... The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved power generation.The cathode is generally recognized as the limiting factor due to its high-distance proton transfer,slow oxygen reduction reaction(ORR),and expensive materials.The heterogeneous reaction determines power gen-eration in MFC.This comprehensive review describes-recent advancements in the development of cathode mate-rials and catalysts associated with ORR.The recent studies indicated the utilization of different metal oxides,the ferrite-based catalyst to overcome this bottleneck.These studies conclude that some cathode materials,in parti-cular,graphene-based conductive polymer composites with non-precious metal catalysts provide substantial ben-efits for sustainable development in the field of MFCs.Furthermore,it also highlights the potentiality to replace the conventional platinum air cathode for the large-scale production of the next generation of MFCs.It was evi-dent from the experiments that cathode catalyst needs to be blended with conductive carbon materials to make cathode conductive and efficient for ORR.This review discusses various antifouling strategies for cathode biofoul-ing and its effect on the MFC performance.Moreover,it also depicts cost estimations of various catalysts essential for further scale-up of MFC technology. 展开更多
关键词 CATHODE catalyst microbial fuel cell(MFC) NANOMATERIALS oxygen reduction reaction(ORR) BIOFOULING BIOCATHODE
下载PDF
Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review 被引量:1
19
作者 Mustapha Omenesa Idris Claudia Guerrero-Barajas +2 位作者 Hyun-Chul Kim Asim Ali Yaqoob Mohamad Nasir Mohamad Ibrahim 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期277-292,共16页
Microbial fuel cell(MFC) is an advanced bioelectrochemical technique that can utilize biomass materials in the process of simultaneously generating electricity and biodegrading or bio transforming toxic pollutants fro... Microbial fuel cell(MFC) is an advanced bioelectrochemical technique that can utilize biomass materials in the process of simultaneously generating electricity and biodegrading or bio transforming toxic pollutants from wastewater. The overall performance of the system is largely dependent on the efficiency of the anode electrode to enhance electron transportation. Furthermore, the anode electrode has a significant impact on the overall cost of MFC setup. Hence, the need to explore research focused towards developing cost-effective material as anode in MFC. This material must also have favourable properties for electron transportation. Graphene oxide(GO) derivatives and its modification with nanomaterials have been identified as a viable anode material. Herein, we discussed an economically effective strategy for the synthesis of graphene derivatives from waste biomass materials and its subsequent fabrication into anode electrode for MFC applications. This review article offers a promising approach towards replacing commercial graphene materials with biomass-derived graphene derivatives in a view to achieve a sustainable and commercialized MFC. 展开更多
关键词 microbial fuel cell BIOMASS Anode fabrication Catalyst Design Cost-effective performance
下载PDF
Characterization of Fe/N-doped graphene as air-cathode catalyst in microbial fuel cells 被引量:1
20
作者 Dingling Wang Zhaokun Ma +1 位作者 Yang’en Xie Huaihe Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1187-1195,共9页
This work proposed a simple and efficient approach for synthesis of durable and efficient non-precious metal oxygen reduction reaction(ORR) electro-catalysts in MFCs. The rod-like carbon nanotubes(CNTs)were formed... This work proposed a simple and efficient approach for synthesis of durable and efficient non-precious metal oxygen reduction reaction(ORR) electro-catalysts in MFCs. The rod-like carbon nanotubes(CNTs)were formed on the Fe–N/SLG sheets after a carbonization process. The maximum power density of1210 ± 23 m W·mobtained with Fe–N/SLG catalyst in an MFC was 10.7% higher than that of Pt/C catalyst(1080 ± 20 mW ·m) under the same condition. The results of RDE test show that the ORR electron transfer number of Fe–N/SLG was 3.91 ± 0.02, which suggested that ORR catalysis proceeds through a four-electron pathway. The whole time of the synthesis of electro-catalysts is about 10 h, making the research take a solid step in the MFC expansion due to its low-cost, high efficiency and favorable electrochemical performance. Besides, we compared the electrochemical properties of catalysts using SLG, high conductivity graphene(HCG, a kind of multilayer graphene) and high activity graphene(HAG, a kind of GO) under the same conditions, providing a solution for optimal selection of cathode catalyst in MFCs.The morphology, crystalline structure, elemental composition and ORR activity of these three kinds of Fe–N/C catalysts were characterized. Their ORR activities were compared with commercial Pt/C catalyst.It demonstrates that this kind of Fe–N/SLG can be a type of promising highly efficient catalyst and could enhance ORR performance of MFCs. 展开更多
关键词 microbial fuel cell GRAPHENE ELECTROCATALYSTS Power density Oxygen reduction reaction
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部